Leibniz rules for fractional derivatives of non-differentiable functions

被引:0
|
作者
Kostic, Marko [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, Serbia
关键词
Leibniz rules for fractional derivatives; generalized Laplace fractional derivatives; Prabhakar fractional derivatives; generalized Hilfer (a; b; alpha)-fractional derivatives; EQUATIONS;
D O I
10.1080/10652469.2024.2414806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine Leibniz rules for generalized Laplace fractional derivatives and some special kinds of fractional derivatives, including generalized Hilfer (a, b, alpha)-derivatives and Prabhakar derivatives. We focus our attention to analysis of Leibniz rules for fractional derivatives of non-differentiable functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] MOUNTAIN PASS THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS AND APPLICATIONS
    RADULESCU, VD
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 193 - 198
  • [22] Smoothing curve by orthogonal polynomials with non-differentiable functions as their weight functions
    Podisuk, Maitree
    Bundit, Kasem
    Chaisanit, Pornchai
    Changpuak, Terdkwan
    Pispeng, Wichuta
    Kameesak, Sutisa
    Sujarakittikul, Piyapong
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 94 - +
  • [23] On the critical case of Okamoto's continuous non-differentiable functions
    Kobayashi, Kenta
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (08) : 101 - 104
  • [24] Bounded Palais-Smale sequences for non-differentiable functions
    Candito, P.
    Livrea, R.
    Motreanu, D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5446 - 5454
  • [25] Leibniz Rule and Fractional Derivatives of Power Functions
    Tarasov, Vasily E.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [26] Second-order duality for non-differentiable minimax fractional programming
    Hu, Qingjie
    Chen, Yu
    Jian, Jinbao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (01) : 11 - 16
  • [27] Non-differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations
    Yang, Xiao-Jun
    Srivastava, H. M.
    Torres, Delfim F. M.
    Zhang, Yudong
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 409 - 417
  • [28] Non-differentiable deformations of Rn
    Cresson, Jacky
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1395 - 1415
  • [29] Programming with a non-differentiable constraint
    G. C. Tuteja
    OPSEARCH, 2004, 41 (4) : 291 - 297
  • [30] Non-differentiable variational principles
    Cresson, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64