Polyacrylonitrile/Polyaniline Composite Nanofibers for High-Performance Triboelectric Nanogenerator and Self-Powered Wireless Sensing Applications

被引:0
|
作者
Shi, Changqu [1 ]
Liu, Xing [1 ]
Zhao, Chao [1 ]
Li, Jing [1 ]
Wang, Yifan [2 ]
Wang, Jingbo [3 ]
Duo, Yongchao [1 ]
Li, Yeran [1 ]
Jin, Xin [2 ]
Zhu, Zhengtao [1 ,4 ]
Wang, Wenyu [1 ]
机构
[1] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Shanghai 200000, Peoples R China
[4] South Dakota Sch Mines & Technol, Dept Chem & Appl Biol Sci, Rapid City, SD 57701 USA
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerators; polyaniline; electron-donating; dielectric constant; self-powered;
D O I
10.1021/acsami.4c22203
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENGs) are emerging as a sustainable and environmentally friendly approach for energy harvesting and self-powered sensing, because of their diverse material options, simple structure, and efficient energy conversion. However, developing tribopositive materials with both high-charge-inducing and high-charge-trapping capabilities remains a significant challenge. Herein, a high-performance TENG is developed based on a polyaniline (PANI) embedded polyacrylonitrile (PAN) nanofiber membrane (NM) (P/P NM) for energy harvesting and self-powered wireless sensing. The incorporation of PANI significantly enhanced the electrical performance, mechanical properties, and thermal stability of P/P NMs. The P/P NM-based TENG achieved an output voltage of 726 V, a short-circuit current density of 32 mu A/cm2, and a peak power density of 23.3 W/m2, which were approximately 2.3, 3.6, and 4.6 times higher than those of the pristine PAN NM-based TENG, respectively. Detailed investigations revealed that the embedded PANI improved the electron-donating ability and dielectric constant (by 4.25 times) of P/P NMs, thereby significantly boosting the electrical output of the TENG. The mechanical energy harvesting ability was elucidated through capacitor charging and the operation of low-power devices. Furthermore, the P/P NM-based TENG was integrated into a self-powered wireless sensing system, which enabled the cross-scale monitoring of human signals ranging from tiny pulses to large-scale movements. The introduction of PANI nanofillers provides a simple, effective, and scalable strategy for developing high-performance positive tribomaterials, thus, advancing the practical application of TENGs in energy harvesting and self-powered sensing.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
    Chen, Jun
    Wang, Zhong Lin
    JOULE, 2017, 1 (03) : 480 - 521
  • [32] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [33] Hybrid piezo/triboelectric nanogenerator for stray magnetic energy harvesting and self-powered sensing applications
    Yang, Aijun
    Wang, Chaoyu
    Ma, Jing
    Fan, Chengyu
    Lv, Pinlei
    Bai, Yuchen
    Rong, Yiming
    Wang, Xiaohua
    Yuan, Huan
    Rong, Mingzhe
    HIGH VOLTAGE, 2021, 6 (06) : 978 - 985
  • [34] Self-healable, recyclable, and mechanically robust vitrimer composite for high-performance triboelectric nanogenerators and self-powered wireless electronics
    Rajabi-Abhari, Araz
    Li, Pandeng
    Bagheri, Majid Haji
    Khan, Asif Abdullah
    Hao, Cheng
    Tanguy, Nicolas R.
    Ban, Dayan
    Yu, Longjiang
    Yan, Ning
    NANO ENERGY, 2024, 131
  • [35] High performance triboelectric nanogenerator based on purified chitin nanopaper for the applications of self-powered humidity sensing, gait monitoring, and hyperhidrosis sensor
    Khan, Shenawar Ali
    Rehman, Muhammad Muqeet
    Ameen, Shahid
    Saqib, Muhammad
    Khan, Maryam
    Kim, Woo Young
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 40
  • [36] PVDF/N-rGO nanofibers based sustainable triboelectric nanogenerator for self-powered wireless motion sensor
    Rana, Shilpa
    Sharma, Himani
    Bokolia, Renuka
    Bhatt, Kamlesh
    Singh, Rajendra
    Meena, Ramcharan
    Singh, Bharti
    CARBON, 2025, 234
  • [37] Laminated Triboelectric Nanogenerator for Enhanced Self-Powered Pressure-Sensing Performance by Charge Regulation
    Xu, Renjie
    Zhu, Lifeng
    Zhang, Qirui
    Wang, Zijian
    Shen, Lanyue
    Chen, Yunfeng
    Lei, Hao
    Ge, Xiangchao
    Jiang, Jinxing
    Liu, Jingya
    Ma, Yanyun
    Sun, Xuhui
    Wen, Zhen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (35) : 40014 - 40020
  • [38] Kirigami-Based Flexible, High-Performance Piezoelectric/Triboelectric Hybrid Nanogenerator for Mechanical Energy Harvesting and Multifunctional Self-Powered Sensing
    Peng, Yongwei
    Li, Yongkang
    Yu, Wei
    ENERGY TECHNOLOGY, 2022, 10 (08)
  • [39] Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors
    Duan, Zhengyin
    Cai, Feng
    Chen, Yuxin
    Chen, Tianying
    Lu, Peng
    SENSORS, 2024, 24 (12)
  • [40] Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator
    Kamilya, Tapas
    Park, Jinhyoung
    MICROMACHINES, 2022, 13 (12)