Polyacrylonitrile/Polyaniline Composite Nanofibers for High-Performance Triboelectric Nanogenerator and Self-Powered Wireless Sensing Applications

被引:0
|
作者
Shi, Changqu [1 ]
Liu, Xing [1 ]
Zhao, Chao [1 ]
Li, Jing [1 ]
Wang, Yifan [2 ]
Wang, Jingbo [3 ]
Duo, Yongchao [1 ]
Li, Yeran [1 ]
Jin, Xin [2 ]
Zhu, Zhengtao [1 ,4 ]
Wang, Wenyu [1 ]
机构
[1] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Shanghai 200000, Peoples R China
[4] South Dakota Sch Mines & Technol, Dept Chem & Appl Biol Sci, Rapid City, SD 57701 USA
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerators; polyaniline; electron-donating; dielectric constant; self-powered;
D O I
10.1021/acsami.4c22203
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENGs) are emerging as a sustainable and environmentally friendly approach for energy harvesting and self-powered sensing, because of their diverse material options, simple structure, and efficient energy conversion. However, developing tribopositive materials with both high-charge-inducing and high-charge-trapping capabilities remains a significant challenge. Herein, a high-performance TENG is developed based on a polyaniline (PANI) embedded polyacrylonitrile (PAN) nanofiber membrane (NM) (P/P NM) for energy harvesting and self-powered wireless sensing. The incorporation of PANI significantly enhanced the electrical performance, mechanical properties, and thermal stability of P/P NMs. The P/P NM-based TENG achieved an output voltage of 726 V, a short-circuit current density of 32 mu A/cm2, and a peak power density of 23.3 W/m2, which were approximately 2.3, 3.6, and 4.6 times higher than those of the pristine PAN NM-based TENG, respectively. Detailed investigations revealed that the embedded PANI improved the electron-donating ability and dielectric constant (by 4.25 times) of P/P NMs, thereby significantly boosting the electrical output of the TENG. The mechanical energy harvesting ability was elucidated through capacitor charging and the operation of low-power devices. Furthermore, the P/P NM-based TENG was integrated into a self-powered wireless sensing system, which enabled the cross-scale monitoring of human signals ranging from tiny pulses to large-scale movements. The introduction of PANI nanofillers provides a simple, effective, and scalable strategy for developing high-performance positive tribomaterials, thus, advancing the practical application of TENGs in energy harvesting and self-powered sensing.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO3 Nanofibers for Self-Powered Vibration Sensing Applications
    Athira, B. S.
    George, Ashitha
    Priya, K. Vaishna
    Hareesh, U. S.
    Gowd, E. Bhoje
    Surendran, Kuzhichalil Peethambharan
    Chandran, Achu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (39) : 44239 - 44250
  • [22] High-performance triboelectric nanogenerator based on natural silk fibroin and microstructured polytetrafluoroethylene for self-powered electronics and wearable sensing
    Li, Xiao
    Hu, Ning
    Fan, Qiaolin
    Sun, Meng
    Hu, Tao
    Ni, Zhonghua
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [23] Corrosion-resistant and high-performance crumpled-platinum-based triboelectric nanogenerator for self-powered motion sensing
    Lu, Wei
    Xu, Yun
    Zou, Yuxiao
    Zhang, Lin-ao
    Zhang, Jiushuang
    Wu, Weitong
    Song, Guofeng
    NANO ENERGY, 2020, 69
  • [24] Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
    Zhao, Gengrui
    Zhang, Yawen
    Shi, Nan
    Liu, Zhirong
    Zhang, Xiaodi
    Wu, Mengqi
    Pan, Caofeng
    Liu, Hongliang
    Li, Linlin
    Wang, Zhong Lin
    NANO ENERGY, 2019, 59 : 302 - 310
  • [25] Advances in self-powered chemical sensing via a triboelectric nanogenerator
    Huang, Congxi
    Chen, Guorui
    Nashalian, Ardo
    Chen, Jun
    NANOSCALE, 2021, 13 (04) : 2065 - 2081
  • [26] Surface-Engineered High-Performance Triboelectric Nanogenerator for Self-Powered Health Monitoring and Electronics
    Potu, Supraja
    Madathil, Navaneeth
    Mishra, Siju
    Bora, Arbacheena
    Sivalingam, Yuvaraj
    Babu, Anjaly
    Velpula, Mahesh
    Bochu, Lakshakoti
    Ketharachapalli, Balaji
    Kulandaivel, Anu
    Rajaboina, Rakesh Kumar
    Khanapuram, Uday Kumar
    Divi, Haranath
    Kodali, Prakash
    Murali, Banavoth
    Ketavath, Ravi
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (10): : 2663 - 2675
  • [27] Facile and Robust High-Performance Triboelectric Nanogenerator Based on Electronic Waste for Self-Powered Electronics
    Suneetha, Vikram Lakshmi
    Mahesh, Velpula
    Supraja, Potu
    Navaneeth, Madathil
    Kumar, Khanapuram Uday
    Kumar, Rajaboina Rakesh
    ENERGY TECHNOLOGY, 2025, 13 (01)
  • [28] Surface engineering of a triboelectric nanogenerator for room temperature high-performance self-powered formaldehyde sensors
    Chang, Chih-Yu
    Cheng, Yu-Hsuan
    Ho, Chun-Yi
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (42) : 22373 - 22389
  • [29] High-performance omnidirectional-sliding hybrid nanogenerator for self-powered wireless nodes
    Huang, Peng
    Tian, Sheng-Rui
    Yu, Long
    Tang, Wen-Jie
    Qian, Hang-Yu
    Lei, Bo-Nan
    Wang, Yi-Lin
    Zhang, Xin-Ran
    Zhang, Xiao-Sheng
    NANO ENERGY, 2023, 117
  • [30] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)