Sensitivity analysis and Bayesian calibration of a dynamic wind farm control model: FLORIDyn

被引:1
|
作者
Dighe, Vinit V. [1 ]
Becker, Marcus [1 ]
Gocmen, Tuhfe [2 ]
Sanderse, Benjamin [3 ]
van Wingerden, Jan-Willem [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, NL-2628 CD Delft, Netherlands
[2] Tech Univ Denmark, Dept Wind Energy, Riso Campus, Roskilde, Denmark
[3] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
关键词
D O I
10.1088/1742-6596/2265/2/022062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
FLORIDyn is a parametric control-oriented dynamic model suitable to predict the dynamic wake interactions between wind turbines in a wind farm. In order to improve the accuracy of FLORIDyn, this study proposes to calibrate the tuning parameters present in the model by employing a probabilistic setting using the UQ4WIND framework. The strategy relies on constructing a surrogate model (based on polynomial chaos expansion), which is then used to perform both global sensitivity analysis and Bayesian calibration. For our analysis, a nine wind turbine configuration in a yawed setting constitutes the test case. The results of sensitivity analysis offer valuable insight into the time-dependent influence of the model parameters onto the model output. The model parameter tied to the turbine efficiency appear to be the most sensitive parameter affecting the model output. The calibrated FLORIDyn model using the Bayesian approach yield predictions much closer to the measurement data, which is equipped with an uncertainty estimate.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Control Method of the Wind Farm in Frequency Control Considering Dynamic Performance
    Qiao, Ying
    Guo, Jiaqing
    Wang, Haoran
    Xu, Shaojun
    2021 11TH INTERNATIONAL CONFERENCE ON POWER, ENERGY AND ELECTRICAL ENGINEERING (CPEEE 2021), 2021, : 235 - 240
  • [42] A CFD-based analysis of dynamic induction techniques for wind farm control applications
    Croce, Alessandro
    Cacciola, Stefano
    Montenegro, Mariana Montero
    Stipa, Sebastiano
    Pratico, Roberto
    WIND ENERGY, 2023, 26 (03) : 325 - 343
  • [43] Sensitivity and Uncertainty of the FLORIS Model Applied on the Lillgrund Wind Farm
    van Beek, Maarten T.
    Vire, Axelle
    Andersen, Soren J.
    ENERGIES, 2021, 14 (05)
  • [44] Research on sensitivity analysis for dynamic Bayesian networks
    Yao, Hongliang
    Zhang, Yiming
    Li, Junzhao
    Wang, Hao
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2014, 51 (03): : 536 - 547
  • [45] Development of Phasor Type Model of PMSG based Wind Farm for Dynamic Simulation Analysis
    Rosyadi, Marwan
    Umemura, Atsushi
    Takahashi, Rion
    Tamura, Junji
    Kondo, Shin'ichi
    Ide, Kazumasa
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [46] A Dynamic Bayesian Model of Homeostatic Control
    Penny, Will
    Stephan, Klaas
    ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2014, 2014, 8779 : 60 - 69
  • [47] Dynamic Equivalent Model of a Grid-connected Wind Farm for Oscillation Stability Analysis
    Dong W.
    Du W.
    Wang H.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (01): : 75 - 87
  • [48] Wind farm modeling for steady state and dynamic analysis
    Kabashi, G.
    Kadriu, K.
    Gashi, A.
    Kabashi, S.
    Pula, G.
    Komoni, V.
    World Academy of Science, Engineering and Technology, 2011, 50 : 262 - 267
  • [49] Reassessment of a calibration model by Bayesian reference analysis
    Grientschnig, Dieter
    Lira, Ignacio
    METROLOGIA, 2011, 48 (01) : L7 - L11
  • [50] An Optimal Frequency Control Method Through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm
    Gholamrezaie, Vahid
    Dozein, Mehdi Ghazavi
    Monsef, Hassan
    Wu, Bin
    IEEE SYSTEMS JOURNAL, 2018, 12 (01): : 392 - 401