Sensitivity analysis and Bayesian calibration of a dynamic wind farm control model: FLORIDyn

被引:1
|
作者
Dighe, Vinit V. [1 ]
Becker, Marcus [1 ]
Gocmen, Tuhfe [2 ]
Sanderse, Benjamin [3 ]
van Wingerden, Jan-Willem [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, NL-2628 CD Delft, Netherlands
[2] Tech Univ Denmark, Dept Wind Energy, Riso Campus, Roskilde, Denmark
[3] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
关键词
D O I
10.1088/1742-6596/2265/2/022062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
FLORIDyn is a parametric control-oriented dynamic model suitable to predict the dynamic wake interactions between wind turbines in a wind farm. In order to improve the accuracy of FLORIDyn, this study proposes to calibrate the tuning parameters present in the model by employing a probabilistic setting using the UQ4WIND framework. The strategy relies on constructing a surrogate model (based on polynomial chaos expansion), which is then used to perform both global sensitivity analysis and Bayesian calibration. For our analysis, a nine wind turbine configuration in a yawed setting constitutes the test case. The results of sensitivity analysis offer valuable insight into the time-dependent influence of the model parameters onto the model output. The model parameter tied to the turbine efficiency appear to be the most sensitive parameter affecting the model output. The calibrated FLORIDyn model using the Bayesian approach yield predictions much closer to the measurement data, which is equipped with an uncertainty estimate.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dynamic Flow Model for Real-Time Application in Wind Farm Control
    Rott, Andreas
    Boersma, Sjoerd
    van Wingerden, Jan-Willem
    Kuehn, Martin
    WAKE CONFERENCE 2017, 2017, 854
  • [22] Frequency sensitivity analysis of dynamic demand response in wind farm integrated power system
    Pradhan, Chittaranjan
    Bhende, Chandrashekhar Narayan
    Srivastava, Anurag K.
    IET RENEWABLE POWER GENERATION, 2019, 13 (06) : 905 - 919
  • [23] Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments
    Hjelkrem, Anne-Grete Roer
    Hoglind, Mats
    van Oijen, Marcel
    Schellberg, Juergen
    Gaiser, Thomas
    Ewert, Frank
    ECOLOGICAL MODELLING, 2017, 359 : 80 - 91
  • [24] Bayesian Calibration and Sensitivity Analysis for a Karst Aquifer Model Using Active Subspaces
    Parente, Mario Teixeira
    Bittner, Daniel
    Mattis, Steven A.
    Chiogna, Gabriele
    Wohlmuth, Barbara
    WATER RESOURCES RESEARCH, 2019, 55 (08) : 7086 - 7107
  • [25] SIMPLE WIND FARM DYNAMIC-MODEL
    SAADSAOUD, Z
    JENKINS, N
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1995, 142 (05) : 545 - 548
  • [26] Simplification of wind farm model for dynamic simulation
    Huang, Mei
    Wan, Hangyu
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2009, 24 (09): : 147 - 152
  • [27] Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments
    Schreiber, J.
    Nanos, E. M.
    Campagnolo, F.
    Bottasso, C. L.
    WAKE CONFERENCE 2017, 2017, 854
  • [28] Analysis of the influence of control parameters on wind farm output: a sensitivity analysis using ANN modelling
    Fernandez, E.
    Mabel, M. Carolin
    2006 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONIC, DRIVES AND ENERGY SYSTEMS, VOLS 1 AND 2, 2006, : 898 - +
  • [29] Analysis on dynamic reactive power device control in wind farm integration area
    Zhou, Hongting
    Song, Wei
    Liu, Xiaolong
    Zhao, Yusi
    ADVANCES IN ENERGY SCIENCE AND EQUIPMENT ENGINEERING, 2015, : 2065 - 2068
  • [30] Sensitivity analysis and calibration of a dynamic physically based slope stability model
    Zieher, Thomas
    Rutzinger, Martin
    Schneider-Muntau, Barbara
    Perzl, Frank
    Leidinger, David
    Formayer, Herbert
    Geitner, Clemens
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2017, 17 (06) : 971 - 992