Sensitivity analysis and Bayesian calibration of a dynamic wind farm control model: FLORIDyn

被引:1
|
作者
Dighe, Vinit V. [1 ]
Becker, Marcus [1 ]
Gocmen, Tuhfe [2 ]
Sanderse, Benjamin [3 ]
van Wingerden, Jan-Willem [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, NL-2628 CD Delft, Netherlands
[2] Tech Univ Denmark, Dept Wind Energy, Riso Campus, Roskilde, Denmark
[3] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
关键词
D O I
10.1088/1742-6596/2265/2/022062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
FLORIDyn is a parametric control-oriented dynamic model suitable to predict the dynamic wake interactions between wind turbines in a wind farm. In order to improve the accuracy of FLORIDyn, this study proposes to calibrate the tuning parameters present in the model by employing a probabilistic setting using the UQ4WIND framework. The strategy relies on constructing a surrogate model (based on polynomial chaos expansion), which is then used to perform both global sensitivity analysis and Bayesian calibration. For our analysis, a nine wind turbine configuration in a yawed setting constitutes the test case. The results of sensitivity analysis offer valuable insight into the time-dependent influence of the model parameters onto the model output. The model parameter tied to the turbine efficiency appear to be the most sensitive parameter affecting the model output. The calibrated FLORIDyn model using the Bayesian approach yield predictions much closer to the measurement data, which is equipped with an uncertainty estimate.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FLORIDyn - A dynamic and flexible framework for real-time wind farm control
    Becker, M.
    Allaerts, D.
    van Wingerden, J. W.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2022, 2022, 2265
  • [2] Ensemble-Based Flow Field Estimation Using the Dynamic Wind Farm Model FLORIDyn
    Becker, Marcus
    Allaerts, Dries
    Van Wingerden, Jan-Willem
    ENERGIES, 2022, 15 (22)
  • [3] Wind Turbine Wake Estimation and Control Using FLORIDyn, a Control-Oriented Dynamic Wind Plant Model
    Gebraad, P. M. O.
    Fleming, P. A.
    van Wingerden, J. W.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1702 - 1708
  • [4] Calibration and sensitivity analysis of a dynamic model for control of nitrate in lettuce
    van Straten, G
    Cruz, IL
    Seginer, I
    Buwalda, F
    PROCEEDING OF THE THIRD INTERNATIONAL WORKSHOP ON MODELS FOR PLANT GROWTH AND CONTROL OF THE SHOOT AND ROOT ENVIRONMENTS IN GREENHOUSES, 1999, (507): : 149 - 156
  • [5] Establish and application of wind speed model in wind farm dynamic analysis
    China Electric Power Research Institute, Beijing 100085, China
    不详
    Zhongguo Dianji Gongcheng Xuebao, 2007, 36 (68-72):
  • [6] A dynamic model of wind turbine yaw for active farm control
    Starke, Genevieve M.
    Meneveau, Charles
    King, Jennifer R.
    Gayme, Dennice F.
    WIND ENERGY, 2024, 27 (11) : 1302 - 1318
  • [7] A control-oriented dynamic wind farm model: WFSim
    Boersma, Sjoerd
    Doekemeijer, Bart
    Vali, Mehdi
    Meyers, Johan
    van Wingerden, Jan-Willem
    WIND ENERGY SCIENCE, 2018, 3 (01) : 75 - 95
  • [8] Virtuality-Reality Combination Control for Wind Farm Maximum Power Generation With Wake Model Dynamic Calibration
    Xiao, Jinxin
    Wang, Pengda
    Huang, Sheng
    Luo, Qiaoqiao
    Chen, Weimin
    Wei, Juan
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (02) : 1007 - 1020
  • [9] Bayesian Model Calibration and Sensitivity Analysis for Oscillating Biological Experiments
    Hwang, Youngdeok
    Kim, Hang J.
    Chang, Won
    Hong, Christian
    Maceachern, Steven N.
    TECHNOMETRICS, 2025,
  • [10] A Bayesian model for wind farm capacity factors
    Wilkie, David
    Galasso, Carmine
    ENERGY CONVERSION AND MANAGEMENT, 2022, 252