A generalization of the forward-reflected-backward splitting method for monotone inclusions

被引:0
|
作者
Nguyen, Van Dung [1 ]
机构
[1] Univ Transport & Commun, Dept Math Anal, Hanoi, Vietnam
关键词
M onotone inclusion; splitting method; forward-reflected-backward algorithm; ALGORITHM; SUM; OPTIMIZATION; OPERATORS;
D O I
10.1080/02331934.2024.2444628
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a general forward-reflected-backward splitting method for solving monotone inclusions in Hilbert spaces. Our method extends and improves the one of Malitsky and Tam (SIAM J. Optim., 2020). The weak convergence of the proposed algorithm is established under standard conditions. The linear convergence of the proposed method is derived under an additional condition like the strong monotonicity. We also give some theoretical comparisons to demonstrate the efficiency of the proposed algorithm.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [42] Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators
    Latafat, Puya
    Patrinos, Panagiotis
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (01) : 57 - 93
  • [43] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Lorenz, Dirk A.
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (02) : 311 - 325
  • [44] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Dirk A. Lorenz
    Thomas Pock
    Journal of Mathematical Imaging and Vision, 2015, 51 : 311 - 325
  • [45] Accelerated forward–backward algorithms for structured monotone inclusions
    Paul-Emile Maingé
    André Weng-Law
    Computational Optimization and Applications, 2024, 88 : 167 - 215
  • [46] Forward–Partial Inverse–Forward Splitting for Solving Monotone Inclusions
    Luis M. Briceño-Arias
    Journal of Optimization Theory and Applications, 2015, 166 : 391 - 413
  • [47] FORWARD-BACKWARD-HALF FORWARD ALGORITHM FOR SOLVING MONOTONE INCLUSIONS
    Briceno-Arias, Luis M.
    Davis, Damek
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2839 - 2871
  • [48] Convergence Analysis of a New Forward-Reflected-Backward Algorithm for Four Operators Without Cocoercivity
    Cao, Yu
    Wang, Yuanheng
    Rehman, Habib Ur
    Shehu, Yekini
    Yao, Jen-Chih
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) : 256 - 284
  • [49] A Variable Metric Forward-Reflected-Douglas-Rachford Method for Solving Monotone Inclusions
    Du, Trang T. T.
    Nguyen, Van Dung
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2025, 46 (03) : 167 - 193
  • [50] Forward–Backward Splitting Method for Solving a System of Quasi-Variational Inclusions
    Shih-Sen Chang
    Ching-Feng Wen
    Jen-Chih Yao
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2169 - 2189