Forward–Partial Inverse–Forward Splitting for Solving Monotone Inclusions

被引:1
|
作者
Luis M. Briceño-Arias
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
关键词
Composite operator; Partial inverse; Monotone operator theory; Splitting algorithms; Tseng’s method; 47H05; 47J25; 65K05; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide a splitting method for finding a zero of the sum of a maximally monotone operator, a Lipschitzian monotone operator, and a normal cone to a closed vector subspace of a real Hilbert space. The problem is characterised by a simpler monotone inclusion involving only two operators: the partial inverse of the maximally monotone operator with respect to the vector subspace and a suitable Lipschitzian monotone operator. By applying the Tseng’s method in this context, we obtain a fully split algorithm that exploits the whole structure of the original problem and generalises partial inverse and Tseng’s methods. Connections with other methods available in the literature are provided, and the flexibility of our setting is illustrated via applications to some inclusions involving m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} maximally monotone operators, to primal-dual composite monotone inclusions, and to zero-sum games.
引用
收藏
页码:391 / 413
页数:22
相关论文
共 50 条
  • [1] Forward-Partial Inverse-Forward Splitting for Solving Monotone Inclusions
    Briceno-Arias, Luis M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (02) : 391 - 413
  • [2] Forward-partial inverse-half-forward splitting algorithm for solving monotone inclusions
    Briceno-Arias, Luis
    Chen, Jinjian
    Roldan, Fernando
    Tang, Yuchao
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (04) : 1485 - 1502
  • [3] Forward-partial inverse-half-forward splitting algorithm for solving monotone inclusions
    Luis Briceño-Arias
    Jinjian Chen
    Fernando Roldán
    Yuchao Tang
    Set-Valued and Variational Analysis, 2022, 30 (4) : 1485 - 1502
  • [4] Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions
    Briceno-Arias, Luis M.
    OPTIMIZATION, 2015, 64 (05) : 1239 - 1261
  • [5] Forward-reflected-backward and shadow-Douglas-Rachford with partial inverse for solving monotone inclusions
    Roldan, Fernando
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2024, 100 (03) : 723 - 752
  • [6] Stochastic Forward–Backward Splitting for Monotone Inclusions
    Lorenzo Rosasco
    Silvia Villa
    Bang Công Vũ
    Journal of Optimization Theory and Applications, 2016, 169 : 388 - 406
  • [7] FORWARD-BACKWARD-HALF FORWARD ALGORITHM FOR SOLVING MONOTONE INCLUSIONS
    Briceno-Arias, Luis M.
    Davis, Damek
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2839 - 2871
  • [8] FORWARD-BACKWARD SPLITTING WITH DEVIATIONS FOR MONOTONE INCLUSIONS
    Sadeghi H.
    Banert S.
    Giselsson P.
    Applied Set-Valued Analysis and Optimization, 2024, 6 (02): : 113 - 135
  • [9] Stochastic Forward-Backward Splitting for Monotone Inclusions
    Rosasco, Lorenzo
    Villa, Silvia
    Vu, Bang Cong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (02) : 388 - 406
  • [10] A Modified Forward-Backward Splitting Method for Solving Monotone Inclusions and Fixed Points Problems
    Owolabi, Abd-Semii O. -E.
    Mewomo, Oluwatosin T.
    Taiwo, Adeolu
    Jolaoso, Lateef O.
    Gibali, Aviv
    VIETNAM JOURNAL OF MATHEMATICS, 2024,