Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations

被引:0
|
作者
Immer, Alexander [1 ,2 ]
van der Ouderaa, Tycho F. A. [3 ]
Ratsch, Gunnar [1 ]
Fortuin, Vincent [1 ,4 ]
van der Wilk, Mark [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Max Planck Inst Intelligent Syst, Tubingen, Germany
[3] Imperial Coll London, Dept Comp, London, England
[4] Univ Cambridge, Dept Engn, Cambridge, England
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the data augmentation parameters are chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution on the functions of a neural network, which allows us to learn it using Bayesian model selection. This has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [22] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [23] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673
  • [24] LEARNING, INVARIANCE, AND GENERALIZATION IN HIGH-ORDER NEURAL NETWORKS
    GILES, CL
    MAXWELL, T
    APPLIED OPTICS, 1987, 26 (23): : 4972 - 4978
  • [26] Invariance, Encodings, and Generalization: Learning Identity Effects With Neural Networks
    Brugiapaglia, S.
    Liu, M.
    Tupper, P.
    NEURAL COMPUTATION, 2022, 34 (08) : 1756 - 1789
  • [27] Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
    Chernoded, Andrey
    Dudko, Lev
    Myagkov, Igor
    Volkov, Petr
    XXIII INTERNATIONAL WORKSHOP HIGH ENERGY PHYSICS AND QUANTUM FIELD THEORY (QFTHEP 2017), 2017, 158
  • [28] Understanding Effects of Architecture Design to Invariance and Complexity in Deep Neural Networks
    Kim, Dongha
    Kim, Yongdai
    IEEE ACCESS, 2021, 9 : 9670 - 9681
  • [29] Exploring Intensity Invariance in Deep Neural Networks for Brain Image Registration
    Mahmood, Hassan
    Iqbal, Asim
    Islam, Syed Mohammed Shamsul
    2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [30] Introduction to Machine Learning, Neural Networks, and Deep Learning
    Choi, Rene Y.
    Coyner, Aaron S.
    Kalpathy-Cramer, Jayashree
    Chiang, Michael F.
    Campbell, J. Peter
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02):