Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations

被引:0
|
作者
Immer, Alexander [1 ,2 ]
van der Ouderaa, Tycho F. A. [3 ]
Ratsch, Gunnar [1 ]
Fortuin, Vincent [1 ,4 ]
van der Wilk, Mark [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Max Planck Inst Intelligent Syst, Tubingen, Germany
[3] Imperial Coll London, Dept Comp, London, England
[4] Univ Cambridge, Dept Engn, Cambridge, England
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the data augmentation parameters are chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution on the functions of a neural network, which allows us to learn it using Bayesian model selection. This has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [12] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638
  • [13] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [14] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [15] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [16] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [17] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [18] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [19] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [20] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31