CLIPTEXT: A New Paradigm for Zero-shot Text Classification

被引:0
|
作者
Qin, Libo [1 ]
Wang, Weiyun [2 ]
Chen, Qiguang [3 ]
Che, Wanxiang [3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha, Hunan, Peoples R China
[2] Shanghai AI Lab, OpenGVLab, Shanghai, Peoples R China
[3] Harbin Inst Technol, Res Ctr Social Comp & Informat Retrieval, Harbin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While CLIP models are useful for zero-shot vision-and-language (VL) tasks or computer vision tasks, little attention has been paid to the application of CLIP for language tasks. Intuitively, CLIP model have a rich representation pre-trained with natural language supervision, in which we argue that it is useful for language tasks. Hence, this work bridge this gap by investigating a CLIP model for zero-shot text classification. Specifically, we introduce CLIPTEXT, a novel paradigm for zero-shot text classification, which reformulates zero-shot text classification into a text-image matching problem that CLIP can be applied to. In addition, we further incorporate prompt into CLIPTEXT (PROMPT-CLIPTEXT) to better derive knowledge from CLIP. Experimental results on seven publicly available zero-shot text classification datasets show that both CLIPTEXT and PROMPT-CLIPTEXT attain promising performance. Besides, extensive analysis further verifies that knowledge from CLIP can benefit zero-shot text classification task. We hope this work can attract more breakthroughs on applying VL pre-trained models for language tasks.
引用
收藏
页码:1077 / 1088
页数:12
相关论文
共 50 条
  • [41] Improving Cross-lingual Text Classification with Zero-shot Instance-Weighting
    Li, Irene
    Sen, Prithviraj
    Zhu, Huaiyu
    Li, Yunyao
    Radev, Dragomir
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 1 - 7
  • [42] Generating Visual Representations for Zero-Shot Classification
    Bucher, Maxime
    Herbin, Stephane
    Jurie, Frederic
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2666 - 2673
  • [43] Zero-Shot Taxonomy Mapping for Document Classification
    Bongiovanni, Lorenzo
    Bruno, Luca
    Dominici, Fabrizio
    Rizzo, Giuseppe
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 911 - 918
  • [44] ATTRIBUTE DRIVEN ZERO-SHOT CLASSIFICATION AND SEGMENTATION
    Yang, Shu
    Shi, Yemin
    Wang, Yaowei
    Wang, Jing
    Fei, Zesong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [45] Attribute relation learning for zero-shot classification
    Liu, Mingxia
    Zhang, Daoqiang
    Chen, Songcan
    NEUROCOMPUTING, 2014, 139 : 34 - 46
  • [46] Zero-shot Classification using Hyperdimensional Computing
    Ruffino, Samuele
    Karunaratne, Geethan
    Hersche, Michael
    Benini, Luca
    Abu Sebastian
    Rahimi, Abbas
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [47] Gaze Embeddings for Zero-Shot Image Classification
    Karessli, Nour
    Akata, Zeynep
    Schiele, Bernt
    Bulling, Andreas
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6412 - 6421
  • [48] Zero-shot classification with unseen prototype learning
    Zhong Ji
    Biying Cui
    Yunlong Yu
    Yanwei Pang
    Zhongfei Zhang
    Neural Computing and Applications, 2023, 35 : 12307 - 12317
  • [49] Multimodal Ensembling for Zero-Shot Image Classification
    Hickmon, Javon
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23747 - 23749
  • [50] Zero-shot classification with unseen prototype learning
    Ji, Zhong
    Cui, Biying
    Yu, Yunlong
    Pang, Yanwei
    Zhang, Zhongfei
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12307 - 12317