Multimodal Ensembling for Zero-Shot Image Classification

被引:0
|
作者
Hickmon, Javon [1 ]
机构
[1] Univ Washington, Dept Comp Sci, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence has made significant progress in image classification, an essential task for machine perception to achieve human-level image understanding. Despite recent advances in vision-language fields, multimodal image classification is still challenging, particularly for the following two reasons. First, models with low capacity often suffer from underfitting and thus underperform on fine-grained image classification. Second, it is important to ensure high-quality data with rich cross-modal representations of each class, which is often difficult to generate. Here, we utilize ensemble learning to reduce the impact of these issues on pre-trained models. We aim to create a meta-model that combines the predictions of multiple open-vocabulary multimodal models trained on different data to create more robust and accurate predictions. By utilizing ensemble learning and multimodal machine learning, we will achieve higher prediction accuracies without any additional training or fine-tuning, meaning that this method is completely zero-shot.
引用
收藏
页码:23747 / 23749
页数:3
相关论文
共 50 条
  • [1] Gaze Embeddings for Zero-Shot Image Classification
    Karessli, Nour
    Akata, Zeynep
    Schiele, Bernt
    Bulling, Andreas
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6412 - 6421
  • [2] Zero-Shot Image Classification Based on Attribute
    Zhang, Wei
    Chen, Wenbai
    Chen, Xiangfeng
    Han, Hu
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 25 - 30
  • [3] Method for improving zero-shot image classification
    Chen, Xiangfeng
    Chen, Wenbai
    Zhang, Chong
    Lv, Mengyao
    Han, Hu
    JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1688 - 1691
  • [4] Enhanced VAEGAN: a zero-shot image classification method
    Ding, Bo
    Fan, Yufei
    He, Yongjun
    Zhao, Jing
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9235 - 9246
  • [5] Zero-shot image classification based on factor space
    Guan, Shijie
    Guan, Qixue
    Yin, Anqi
    International Journal of Web Engineering and Technology, 2021, 16 (01) : 1 - 29
  • [6] Enhanced VAEGAN: a zero-shot image classification method
    Bo Ding
    Yufei Fan
    Yongjun He
    Jing Zhao
    Applied Intelligence, 2023, 53 : 9235 - 9246
  • [7] Zero-Shot Audio Classification using Image Embeddings
    Dogan, Duygu
    Xie, Huang
    Heittola, Toni
    Virtanen, Tuomas
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1 - 5
  • [8] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)
  • [9] Zero-Shot Image Dehazing
    Li, Boyun
    Gou, Yuanbiao
    Liu, Jerry Zitao
    Zhu, Hongyuan
    Zhou, Joey Tianyi
    Peng, Xi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8457 - 8466
  • [10] Zero-Shot Image Classification Method Based on Attribute Weighting
    Chen, Wenbai
    Chen, Xiangfeng
    Liu, Chang
    Wu, Hao
    Li, Denghua
    PROCEEDINGS OF 2019 6TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2019, : 84 - 88