Implementation of model-informed precision dosing for tamoxifen therapy in patients with breast cancer: A prospective intervention study

被引:1
|
作者
van Nijnatten, Ruben Y. M. [1 ]
Buijs, Sanne M. [1 ]
Agema, Bram C. [1 ]
Fischer, Raphael M. J. [1 ]
Moghaddam-Helmantel, Inge Ghobadi [1 ]
Contant, Caroline M. E. [2 ]
de Jongh, Felix E. [3 ]
Huijben, Auke M. T. [4 ]
Kop, Manon [5 ]
van der Padt-pruijsten, Annemieke [6 ]
Zuetenhorst, Hanneke J. M. [7 ]
van Schaik, Ron H. N. [8 ]
Koch, Birgit C. P. [9 ]
Jager, A. [1 ]
Koolen, Stijn L. W. [1 ,9 ]
Mathijssen, Ron H. J. [1 ]
机构
[1] Erasmus MC Canc Inst, Dept Med Oncol, Dr Molewaterpl 40,POB 2040, NL-3015 CN Rotterdam, Netherlands
[2] Maasstad Hosp, Dept Surg, Rotterdam, Netherlands
[3] Ikazia Hosp, Breast Canc Ctr South Holland South, Dept Internal Med, Rotterdam, Netherlands
[4] Maasstad Hosp, Breast Canc Ctr South Holland South, Dept Internal Med, Rotterdam, Netherlands
[5] IJsselland Hosp, Dept Internal Med, Capelle Aan Den Ijssel, Netherlands
[6] Spijkenisse Med Ctr, Breast Canc Ctr South Holland South, Dept Internal Med, Spijkenisse, Netherlands
[7] Franciscus Gasthuis & Vlietland, Dept Internal Med, Schiedam, Netherlands
[8] Erasmus MC, Dept Clin Chem, Rotterdam, Netherlands
[9] Erasmus MC, Dept Hosp Pharm, Rotterdam, Netherlands
来源
BREAST | 2025年 / 79卷
关键词
Breast cancer; Estrogen receptor positive; Hormone therapy; Tamoxifen; Endoxifen; Model informed precision dosing; Therapeutic drug monitoring; QUALITY-OF-LIFE; CYP2D6; GENOTYPE; POSTMENOPAUSAL WOMEN; DOSE-ESCALATION; ADJUVANT; METABOLISM; ENDOXIFEN; RISK;
D O I
10.1016/j.breast.2025.103880
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tamoxifen is an estrogen-receptor (ER) antagonist, used as adjuvant treatment of ER-positive breast cancer. It is converted by CYP2D6 into endoxifen, its most active metabolite. Patients with endoxifen plasma concentrations <16 nM face a higher risk of recurrence. The use of a priori model-informed precision dosing (MIPD) may lead to faster target attainment and thus potentially improve patient outcomes. In total, 106 evaluable patients were prospectively included in this single-arm MIPD-intervention study. Patients received a model-predicted tamoxifen dose when starting tamoxifen-treatment (65.1 % of patients received 20 mg, 16.0 % received 30 mg and 18.9 % received 40 mg). Seventy-five percent of the 40 mg group was predicted to be unable to reach the threshold of 16 nM despite receiving the highest registered dose. After attaining steady-state, 84.0 % of patients reached endoxifen levels >= 16 nM, which was not significantly higher compared to a historical control cohort (77.9 %, p = 0.17). The model showed adequate performance and correctly identified patients requiring 40 mg tamoxifen. Endoxifen samples that were acquired 4-6 weeks after treatment initiation, are informative of steady-state endoxifen levels and can be used to inform MIPD and adjust tamoxifen dosing prior to steady-state attainment. In this first MIPD implementation study for patients treated with tamoxifen, MIPD did lead to more patients achieving endoxifen levels >= 16 nM as compared to the one-dose-fits-all strategy, albeit insignificant. This may partly be explained by a larger proportion of patients who were recommended to switch to an aromatase inhibitor (AI) in the intervention cohort. In conclusion, MIPD seems beneficial compared to one-size-fits-all-dosing, but TDM still remains an important addition.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision Dosing of Tamoxifen
    Klopp-Schulze, Lena
    Mueller-Schoell, Anna
    Neven, Patrick
    Koolen, Stijn L. W.
    Mathijssen, Ron H. J.
    Joerger, Markus
    Kloft, Charlotte
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [22] Model-Informed Precision Dosing of Linezolid in Patients with Drug-Resistant Tuberculosis
    Mockeliunas, Laurynas
    Keutzer, Lina
    Sturkenboom, Marieke G. G.
    Bolhuis, Mathieu S.
    Hulskotte, Lotte M. G.
    Akkerman, Onno W.
    Simonsson, Ulrika S. H.
    PHARMACEUTICS, 2022, 14 (04)
  • [23] Model-Informed Artificial Intelligence: Reinforcement Learning for Precision Dosing
    Ribba, Benjamin
    Dudal, Sherri
    Lave, Thierry
    Peck, Richard W.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) : 853 - 857
  • [24] Model-Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing
    Tosca, Elena Maria
    De Carlo, Alessandro
    Ronchi, Davide
    Magni, Paolo
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) : 619 - 636
  • [25] Model-Informed Precision Dosing at the Bedside: Scientific Challenges and Opportunities
    Keizer, Ron J.
    ter Heine, Rob
    Frymoyer, Adam
    Lesko, Lawrence J.
    Mangat, Ranvir
    Goswami, Srijib
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2018, 7 (12): : 785 - 787
  • [26] Model-informed precision dosing: State of the art and future perspectives
    Minichmayr, I. K.
    Dreesen, E.
    Centanni, M.
    Wang, Z.
    Hoffert, Y.
    Friberg, L. E.
    Wicha, S. G.
    ADVANCED DRUG DELIVERY REVIEWS, 2024, 215
  • [27] Pharmacokinetic Model-Informed Precision Dosing of Natalizumab in Multiple Sclerosis
    van den Berg, Stefan P. H.
    Toorop, Alyssa A.
    Hooijberg, Femke
    Wolbink, Gertjan
    Voelkner, Nivea M. F.
    Gelissen, Liza M. Y.
    Killestein, Joep
    van Kempen, Zoe L. E.
    Dorlo, Thomas P. C.
    Rispens, Theo
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2025,
  • [28] Personalized Secukinumab Treatment in Patients with Plaque Psoriasis Using Model-Informed Precision Dosing
    Rodriguez-Fernandez, Karine
    Zarzoso-Foj, Javier
    Saez-Bello, Marina
    Mateu-Puchades, Almudena
    Martorell-Calatayud, Antonio
    Merino-Sanjuan, Matilde
    Gras-Colomer, Elena
    Climente-Marti, Monica
    Mangas-Sanjuan, Victor
    PHARMACEUTICS, 2024, 16 (12)
  • [29] The TARGET trial as a plea for model-informed precision dosing of piperacillin/tazobactam in patients with sepsis
    Gijsen, Matthias
    Dreesen, Erwin
    Wauters, Joost
    Debaveye, Yves
    Spriet, Isabel
    INTENSIVE CARE MEDICINE, 2022, 48 (06) : 768 - 769
  • [30] Tacrolimus population pharmacokinetic model-informed precision dosing in adult liver transplant patients
    Hou, Jiana
    Yang, Siyu
    Liu, Wei
    Lu, Yanxia
    Wei, Jian
    Li, Xingang
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2025,