Implementation of model-informed precision dosing for tamoxifen therapy in patients with breast cancer: A prospective intervention study

被引:1
|
作者
van Nijnatten, Ruben Y. M. [1 ]
Buijs, Sanne M. [1 ]
Agema, Bram C. [1 ]
Fischer, Raphael M. J. [1 ]
Moghaddam-Helmantel, Inge Ghobadi [1 ]
Contant, Caroline M. E. [2 ]
de Jongh, Felix E. [3 ]
Huijben, Auke M. T. [4 ]
Kop, Manon [5 ]
van der Padt-pruijsten, Annemieke [6 ]
Zuetenhorst, Hanneke J. M. [7 ]
van Schaik, Ron H. N. [8 ]
Koch, Birgit C. P. [9 ]
Jager, A. [1 ]
Koolen, Stijn L. W. [1 ,9 ]
Mathijssen, Ron H. J. [1 ]
机构
[1] Erasmus MC Canc Inst, Dept Med Oncol, Dr Molewaterpl 40,POB 2040, NL-3015 CN Rotterdam, Netherlands
[2] Maasstad Hosp, Dept Surg, Rotterdam, Netherlands
[3] Ikazia Hosp, Breast Canc Ctr South Holland South, Dept Internal Med, Rotterdam, Netherlands
[4] Maasstad Hosp, Breast Canc Ctr South Holland South, Dept Internal Med, Rotterdam, Netherlands
[5] IJsselland Hosp, Dept Internal Med, Capelle Aan Den Ijssel, Netherlands
[6] Spijkenisse Med Ctr, Breast Canc Ctr South Holland South, Dept Internal Med, Spijkenisse, Netherlands
[7] Franciscus Gasthuis & Vlietland, Dept Internal Med, Schiedam, Netherlands
[8] Erasmus MC, Dept Clin Chem, Rotterdam, Netherlands
[9] Erasmus MC, Dept Hosp Pharm, Rotterdam, Netherlands
来源
BREAST | 2025年 / 79卷
关键词
Breast cancer; Estrogen receptor positive; Hormone therapy; Tamoxifen; Endoxifen; Model informed precision dosing; Therapeutic drug monitoring; QUALITY-OF-LIFE; CYP2D6; GENOTYPE; POSTMENOPAUSAL WOMEN; DOSE-ESCALATION; ADJUVANT; METABOLISM; ENDOXIFEN; RISK;
D O I
10.1016/j.breast.2025.103880
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tamoxifen is an estrogen-receptor (ER) antagonist, used as adjuvant treatment of ER-positive breast cancer. It is converted by CYP2D6 into endoxifen, its most active metabolite. Patients with endoxifen plasma concentrations <16 nM face a higher risk of recurrence. The use of a priori model-informed precision dosing (MIPD) may lead to faster target attainment and thus potentially improve patient outcomes. In total, 106 evaluable patients were prospectively included in this single-arm MIPD-intervention study. Patients received a model-predicted tamoxifen dose when starting tamoxifen-treatment (65.1 % of patients received 20 mg, 16.0 % received 30 mg and 18.9 % received 40 mg). Seventy-five percent of the 40 mg group was predicted to be unable to reach the threshold of 16 nM despite receiving the highest registered dose. After attaining steady-state, 84.0 % of patients reached endoxifen levels >= 16 nM, which was not significantly higher compared to a historical control cohort (77.9 %, p = 0.17). The model showed adequate performance and correctly identified patients requiring 40 mg tamoxifen. Endoxifen samples that were acquired 4-6 weeks after treatment initiation, are informative of steady-state endoxifen levels and can be used to inform MIPD and adjust tamoxifen dosing prior to steady-state attainment. In this first MIPD implementation study for patients treated with tamoxifen, MIPD did lead to more patients achieving endoxifen levels >= 16 nM as compared to the one-dose-fits-all strategy, albeit insignificant. This may partly be explained by a larger proportion of patients who were recommended to switch to an aromatase inhibitor (AI) in the intervention cohort. In conclusion, MIPD seems beneficial compared to one-size-fits-all-dosing, but TDM still remains an important addition.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy
    Darwich, Adam S.
    Polasek, Thomas M.
    Aronson, Jeffrey K.
    Ogungbenro, Kayode
    Wright, Daniel F. B.
    Achour, Brahim
    Reny, Jean-Luc
    Daali, Youssef
    Eiermann, Birgit
    Cook, Jack
    Lesko, Lawrence
    McLachlan, Andrew J.
    Rostami-Hodjegan, Amin
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 61, 2021, 2021, 61 : 225 - 245
  • [12] Prospective validation of a model-informed precision dosing tool for vancomycin treatment in neonates
    Kalamees, Riste
    Soeorg, Hiie
    Ilmoja, Mari-Liis
    Margus, Kadri
    Lutsar, Irja
    Metsvaht, Tuuli
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2024, 68 (05)
  • [13] Model-Informed Precision Dosing of Vancomycin in Adult Patients Undergoing Hemodialysis
    Oda, Kazutaka
    Jono, Hirofumi
    Saito, Hideyuki
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2023, 67 (06)
  • [14] Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review
    Abdulla, Alan
    Edwina, Angela E.
    Flint, Robert B.
    Allegaert, Karel
    Wildschut, Enno D.
    Koch, Birgit C. P.
    de Hoog, Matthijs
    FRONTIERS IN PEDIATRICS, 2021, 9
  • [15] Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin
    Hughes, Jasmine H.
    Tong, Dominic M. H.
    Lucas, Sarah Scarpace
    Faldasz, Jonathan D.
    Goswami, Srijib
    Keizer, Ron J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) : 233 - 242
  • [16] Limited sampling in model-informed precision dosing of busulfan
    Wansing, E.
    Langebrake, C.
    Kroeger, N.
    Wicha, S. G.
    Dadkhah, A.
    BONE MARROW TRANSPLANTATION, 2022, 57 (SUPPL 1) : 455 - 455
  • [17] MODEL-INFORMED PRECISION DOSING AT THE BEDSIDE: CHALLENGES AND OPPORTUNITIES
    Lesko, Lawrence J.
    DRUG METABOLISM AND PHARMACOKINETICS, 2020, 35 (01) : S5 - S5
  • [18] Model-Informed Precision Dosing of Antibiotics in Osteoarticular Infections
    Liu, Lingling
    Wang, Jin
    Zhang, Huan
    Chen, Mengli
    Cai, Yun
    INFECTION AND DRUG RESISTANCE, 2022, 15 : 99 - 110
  • [19] Model-informed precision dosing in inflammatory bowel diseases
    Bourgonje, Arno R.
    Dubinsky, Marla C.
    Keizer, Ron J.
    Dreesen, Erwin
    Mian, Paola
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2025, 46 (01) : 9 - 19
  • [20] Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing
    Taylor, Zachary L.
    Poweleit, Ethan A.
    Paice, Kelli
    Somers, Katherine M.
    Pavia, Kathryn
    Vinks, Alexander A.
    Punt, Nieko
    Mizuno, Tomoyuki
    Girdwood, Sonya Tang
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (12): : 1827 - 1845