Cramer-Rao Bound for Signal Parameter Estimation From Modulo ADC Generated Data

被引:1
|
作者
Cheng, Yuanbo [1 ]
Karlsson, Johan [2 ]
Li, Jian [3 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China
[2] KTH Royal Inst Technol, Dept Math, S-11400 Stockholm, Sweden
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
Analog-to-digital converter (ADC); Cauchy-Schwarz inequality; Cramer-Rao bound (CRB); dynamic range; Fisher information matrix (FIM); folding-count; infinite series; modulo ADC (Mod-ADC); parameter estimation; quantization;
D O I
10.1109/TSP.2024.3453346
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To mitigate the dynamic range problems that low-bit quantization of conventional analog-to-digital converters (ADCs) suffer from, we shift our attention to the novel modulo ADCs (Mod-ADCs). We consider the Cramer-Rao bound (CRB) analysis for signal parameter estimation from Mod-ADC generated data. Four CRB formulas are derived assuming known or unknown folding-counts, for both quantized and unquantized cases. We analyze many of their characteristics, such as monotonicity, boundedness and convergence; and perform detailed comparisons of the CRBs among the conventional ADCs and the two different types of Mod-ADCs. Numerical examples are presented to demonstrate these characteristics, and that the low-bit Mod-ADCs can provide satisfactory signal parameter estimation performances even in high dynamic range situations.
引用
收藏
页码:4268 / 4285
页数:18
相关论文
共 50 条
  • [41] The true Cramer-Rao bound for phase-independent carrier frequency estimation from a PSK signal
    Noels, N
    Steendam, H
    Moeneclaey, M
    GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 1137 - 1141
  • [42] The asymptotic Cramer-Rao lower bound for blind signal separation
    Sahlin, H
    Lindgren, U
    8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 328 - 331
  • [43] Cramer-Rao Bound for Wideband DOA Estimation with Uncorrelated Sources
    Liang, Yibao
    Shen, Qing
    Cui, Wei
    Liu, Wei
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [44] Cramer-Rao Lower Bound for parametric estimation of quantized sinewaves
    Moschitta, Antonio
    Carbone, Paolo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (03) : 975 - 982
  • [45] On the asymptotic analysis of Cramer-Rao bound for time delay estimation
    Yin, CY
    Xu, SJ
    Wang, DJ
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 109 - 112
  • [46] Cramer-Rao Lower Bound for Frequency Estimation of Sinusoidal Signals
    Dai, Erhan
    Su, Linfei
    Ge, Yan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 7
  • [47] Bayesian Cramer-Rao bound for dynamical phase offset estimation
    Bay, S.
    Herzet, C.
    Brossier, J. M.
    Barbot, J. P.
    Renaux, A.
    Geller, B.
    2007 IEEE 8TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2007, : 285 - +
  • [48] ON THE CRAMER-RAO BOUND FOR TIME-DELAY AND DOPPLER ESTIMATION
    FRIEDLANDER, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) : 575 - 580
  • [49] Cramer-Rao Low Bound Estimation for MSE of SCoSaMP Algorithm
    Wang, Cheng
    Chen, Peng
    Yang, Huahui
    Li, Wanling
    Liu, Deliang
    Meng, Chen
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2158 - 2165
  • [50] Cramer-Rao Lower Bound for prior-subspace estimation
    Boyer, Remy
    Bouleux, Guillaume
    2006 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2006, : 394 - +