Cramer-Rao Bound for Signal Parameter Estimation From Modulo ADC Generated Data

被引:1
|
作者
Cheng, Yuanbo [1 ]
Karlsson, Johan [2 ]
Li, Jian [3 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China
[2] KTH Royal Inst Technol, Dept Math, S-11400 Stockholm, Sweden
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
Analog-to-digital converter (ADC); Cauchy-Schwarz inequality; Cramer-Rao bound (CRB); dynamic range; Fisher information matrix (FIM); folding-count; infinite series; modulo ADC (Mod-ADC); parameter estimation; quantization;
D O I
10.1109/TSP.2024.3453346
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To mitigate the dynamic range problems that low-bit quantization of conventional analog-to-digital converters (ADCs) suffer from, we shift our attention to the novel modulo ADCs (Mod-ADCs). We consider the Cramer-Rao bound (CRB) analysis for signal parameter estimation from Mod-ADC generated data. Four CRB formulas are derived assuming known or unknown folding-counts, for both quantized and unquantized cases. We analyze many of their characteristics, such as monotonicity, boundedness and convergence; and perform detailed comparisons of the CRBs among the conventional ADCs and the two different types of Mod-ADCs. Numerical examples are presented to demonstrate these characteristics, and that the low-bit Mod-ADCs can provide satisfactory signal parameter estimation performances even in high dynamic range situations.
引用
收藏
页码:4268 / 4285
页数:18
相关论文
共 50 条
  • [31] Resonance parameter estimation from spectral data: Cramer-Rao lower bound and stable algorithms with application to liquid sensors
    Voglhuber-Brunnmaier, T.
    Niedermayer, A. O.
    Beigelbeck, R.
    Jakoby, B.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (10)
  • [32] The Cramer-Rao bound for continuous-time autoregressive parameter estimation with irregular sampling
    Larsson, EG
    Larsson, EK
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (06) : 581 - 601
  • [33] Maximum-likelihood estimation, the Cramer-Rao bound, and the method of scoring with, parameter constraints
    Moore, Terrence J.
    Sadler, Brian M.
    Kozick, Richard J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 895 - 908
  • [34] Cramer-Rao bounds for circadian rhythm parameter estimation
    Zarowski, C
    Kropyvnytskyy, I
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1083 - 1086
  • [35] CRAMER-RAO BOUND FOR ESTIMATION TASKS USING MULTIPLE ENERGY WINDOW DATA
    KIJEWSKI, MF
    MOORE, SC
    MUELLER, SP
    JOURNAL OF NUCLEAR MEDICINE, 1994, 35 (05) : P4 - P4
  • [36] Cramer-Rao Lower Bound for Motion Parameter Estimation of an Approaching Missile with Constant Acceleration
    Lv, Peng
    Wei, Guohua
    Cui, Wei
    Wu, Siliang
    Wang, Xu
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1905 - 1910
  • [37] The Cramer-Rao Bound for Continuous-Time Autoregressive Parameter Estimation with Irregular Sampling
    Erik G. Larsson
    Erik K. Larsson
    Circuits, Systems and Signal Processing, 2002, 21 : 581 - 601
  • [38] A SIMPLE DERIVATION OF THE CONSTRAINED MULTIPLE PARAMETER CRAMER-RAO BOUND
    MARZETTA, TL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (06) : 2247 - 2249
  • [39] Cramer-Rao lower bound for non-coherent TOA estimation with Impulse Signal
    Liu, Jie
    Li, Xiaoji
    Zheng, Lin
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION ASSURANCE AND SECURITY, VOL 1, PROCEEDINGS, 2009, : 754 - 757
  • [40] COMPACT CRAMER-RAO BOUND EXPRESSION FOR AN EXTENDED SIGNAL MODEL
    LEE, HB
    JACHNER, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) : 2868 - 2870