Hilbert schemes of points on surfaces and multiple q-zeta values

被引:0
|
作者
Alhwaimel, Mazen M. [1 ]
Qin, Zhenbo [2 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51452, Saudi Arabia
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Hilbert schemes of points on surfaces; multiple q-zeta values; quasimodular forms; Heisenberg operators; generalized partitions; ALGEBRA; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a line bundle L on a smooth projective surface X and nonnegative integers k(1), ... , k(N), Okounkov [19] introduced the reduced generating series < ch(k1)(L) ... ch(kN)(L)>' for the intersection numbers among the Chern characters of the tautological bundles over the Hilbert schemes of points on X and the total Chern classes of the tangent bundles of these Hilbert schemes, and conjectured that they are multiple q-zeta values of weight at most Sigma(N)(i=1) (k(i)+2). The second-named author further conjectured in [22] that these reduced generating series are quasi-modular forms if the canonical divisor of X is numerically trivial. In this paper, we verify these two conjectures for < ch(2)(L)>'. The main approaches are to apply the procedure laid out in [23] and to establish various identities for multiple q-zeta values and quasi-modular forms.
引用
收藏
页码:2615 / 2646
页数:32
相关论文
共 50 条
  • [31] Integral cohomology of Hilbert schemes of points on surfaces
    Li, Wei-Ping
    Qin, Zhenbo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (05) : 969 - 988
  • [32] Note on the Euler q-zeta functions
    Kim, Taekyun
    JOURNAL OF NUMBER THEORY, 2009, 129 (07) : 1798 - 1804
  • [33] Frobenius splitting of Hilbert schemes of points on surfaces
    Shrawan Kumar
    Jesper Funch Thomsen
    Mathematische Annalen, 2001, 319 : 797 - 808
  • [34] TWISTED COHOMOLOGY OF THE HILBERT SCHEMES OF POINTS ON SURFACES
    Nieper-Wisskirchen, Marc A.
    DOCUMENTA MATHEMATICA, 2009, 14 : 749 - 770
  • [35] More lectures on Hilbert schemes of points on surfaces
    Nakajima, Hiraku
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 173 - 205
  • [36] Frobenius splitting of Hilbert schemes of points on surfaces
    Kumar, S
    Thomsen, JF
    MATHEMATISCHE ANNALEN, 2001, 319 (04) : 797 - 808
  • [37] Nef cones of Hilbert schemes of points on surfaces
    Bolognese, Barbara
    Huizenga, Jack
    Lin, Yinbang
    Riedl, Eric
    Schmidt, Benjamin
    Woolf, Matthew
    Zhao, Xiaolei
    ALGEBRA & NUMBER THEORY, 2016, 10 (04) : 907 - 930
  • [38] A new approach to q-zeta function
    Kim, Taekyun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2007, 9 (04) : 395 - 400
  • [39] Barnes-type multiple q-zeta functions and q-Euler polynomials
    Kim, Taekyun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (25)
  • [40] Stability of the cohomology rings of Hilbert schemes of points on surfaces
    Li, WP
    Qin, ZB
    Wang, WQ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 554 : 217 - 234