Hilbert schemes of points on surfaces and multiple q-zeta values

被引:0
|
作者
Alhwaimel, Mazen M. [1 ]
Qin, Zhenbo [2 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51452, Saudi Arabia
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Hilbert schemes of points on surfaces; multiple q-zeta values; quasimodular forms; Heisenberg operators; generalized partitions; ALGEBRA; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a line bundle L on a smooth projective surface X and nonnegative integers k(1), ... , k(N), Okounkov [19] introduced the reduced generating series < ch(k1)(L) ... ch(kN)(L)>' for the intersection numbers among the Chern characters of the tautological bundles over the Hilbert schemes of points on X and the total Chern classes of the tangent bundles of these Hilbert schemes, and conjectured that they are multiple q-zeta values of weight at most Sigma(N)(i=1) (k(i)+2). The second-named author further conjectured in [22] that these reduced generating series are quasi-modular forms if the canonical divisor of X is numerically trivial. In this paper, we verify these two conjectures for < ch(2)(L)>'. The main approaches are to apply the procedure laid out in [23] and to establish various identities for multiple q-zeta values and quasi-modular forms.
引用
收藏
页码:2615 / 2646
页数:32
相关论文
共 50 条
  • [21] Linear and algebraic independence of q-zeta values
    Pupyrev, YA
    MATHEMATICAL NOTES, 2005, 78 (3-4) : 563 - 568
  • [22] Multiple q-zeta functions and multiple q-polylogarithms
    Zhao, Jianqiang
    RAMANUJAN JOURNAL, 2007, 14 (02): : 189 - 221
  • [23] MOMENTS OF q-JACOBI POLYNOMIALS AND q-ZETA VALUES
    Chapoton, Frederic
    Krattenthaler, Christian
    Zeng, Jiang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2024, 19 (04) : 110 - 117
  • [24] Multiple q-zeta functions and multiple q-polylogarithms
    Jianqiang Zhao
    The Ramanujan Journal, 2007, 14 : 189 - 221
  • [25] On the Values of the Weighted q-Zeta and L-Functions
    Kim, T.
    Lee, S. H.
    Han, Hyeon-Ho
    Ryoo, C. S.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [26] Approximations to q-logarithms and q-dilogarithms, with applications to q-zeta values
    Zudilin W.
    Journal of Mathematical Sciences, 2006, 137 (2) : 4673 - 4683
  • [27] AUTOMORPHISMS OF HILBERT SCHEMES OF POINTS ON SURFACES
    Belmans, Pieter
    Oberdieck, Georg
    Rennemo, Jorgen Vold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) : 6139 - 6156
  • [28] Motivic zeta functions of the Hilbert schemes of points on a surface
    Pagano, Luigi
    DOCUMENTA MATHEMATICA, 2024, 29 : 763 - 804
  • [29] q-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH MULTIPLE q-ZETA FUNCTIONS
    Kim, Taekyun
    Jang, Lee-Chae
    Lee, Byungje
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 642 - 653
  • [30] MULTIPLE POINTS, CHAINING AND HILBERT SCHEMES
    GAFFNEY, T
    AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (04) : 595 - 628