Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

被引:0
|
作者
Wang, Yifan [1 ]
Aivalioti, Evmorfia [2 ]
Stamatelopoulos, Kimon [2 ,3 ]
Zervas, Georgios [2 ]
Mortensen, Martin Bodtker [4 ,5 ]
Zeller, Marianne [6 ,7 ]
Liberale, Luca [8 ,9 ]
Di Vece, Davide [8 ,10 ]
Schweiger, Victor [11 ]
Camici, Giovanni G. [1 ]
Luescher, Thomas F. [1 ,12 ,13 ]
Kraler, Simon [1 ,14 ]
机构
[1] Univ Zurich, Ctr Mol Cardiol, CH- 8952 Schlieren, Switzerland
[2] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Med Sch, Dept Clin Therapeut, Athens, Greece
[3] Newcastle Univ, Biosci Inst, Fac Med Sci, Vasc Biol & Med Theme, Newcastle Upon Tyne, England
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[5] Johns Hopkins Univ, Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Dis, Sch Med, Baltimore, MD USA
[6] CHU Dijon Bourgogne, Dept Cardiol, Dijon, France
[7] Univ Bourgogne, Physiolopathol & Epidemiol Cerebrocardiovasc PEC2, EA 7460, Dijon, France
[8] Univ Genoa, Dept Internal Med, Clin Internal Med 1, Genoa, Italy
[9] IRCCS Osped Policlin San Martino Genoa, Italian Cardiovasc Network, Genoa, Italy
[10] Univ Med Greifswald, Internal Med B, Greifswald, Germany
[11] Charite Campus Virchow Klinikum, Deutsch Herzzentrum, Berlin, Germany
[12] Kings Coll London, Royal Brompton & Harefield Hosp GSTT, London, England
[13] Kings Coll London, Cardiovasc Acad Grp, London, England
[14] Cantonal Hosp Baden, Dept Internal Med & Cardiol, Baden, Switzerland
关键词
artificial intelligence; biomarkers; cardiovascular disease; inflammation; machine learning; omics; precision medicine; residual risk; risk prediction; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; SECONDARY PREVENTION; INFLAMMATORY RISK; CLUSTER-ANALYSIS; PREDICTION; DISEASE; MORTALITY; EVENTS; CLASSIFICATION;
D O I
10.1111/eci.70017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
    Su-In Lee
    Safiye Celik
    Benjamin A. Logsdon
    Scott M. Lundberg
    Timothy J. Martins
    Vivian G. Oehler
    Elihu H. Estey
    Chris P. Miller
    Sylvia Chien
    Jin Dai
    Akanksha Saxena
    C. Anthony Blau
    Pamela S. Becker
    Nature Communications, 9
  • [42] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [43] Machine Learning Approach for Cardiovascular Risk and Coronary Artery Calcification Score
    Aditya, C. R.
    Sattaru, Naveen Chakravarthy
    Gopal, Kumaraguruparan
    Rahul, R.
    Chandra Shekara, G.
    Nasif, Omaima
    Alharbi, Sulaiman Ali
    Raghavan, S. S.
    Jayadhas, S. Arockia
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [44] Machine learning in cardiovascular medicine: are we there yet?
    Shameer, Khader
    Johnson, Kipp W.
    Glicksberg, Benjamin S.
    Dudley, Joel T.
    Sengupta, Partho P.
    HEART, 2018, 104 (14) : 1156 - 1164
  • [45] A machine learning approach to risk assessment for alcohol withdrawal syndrome
    Burkhardt, Gerrit
    Adorjan, Kristina
    Kambeitz, Joseph
    Kambeitz-Ilankovic, Lana
    Falkai, Peter
    Eyer, Florian
    Koller, Gabi
    Pogarell, Oliver
    Koutsouleris, Nikolaos
    Dwyer, Dominic B.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2020, 35 : 61 - 70
  • [46] Comparative assessment of statistical and machine learning techniques towards estimating the risk of developing type 2 diabetes and cardiovascular complications
    Dalakleidi, Kalliopi
    Zarkogianni, Konstantia
    Thanopoulou, Anastasia
    Nikita, Konstantina
    EXPERT SYSTEMS, 2017, 34 (06)
  • [47] A Hybrid Machine Learning Approach for Flood Risk Assessment and Classification
    Inyang, Udoinyang Godwin
    Akpan, Emem Etok
    Akinyokun, Oluwole Charles
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2020, 19 (02)
  • [48] A Deep Learning Approach Towards Railway Safety Risk Assessment
    Alawad, Hamad
    Kaewunruen, Sakdirat
    An, Min
    IEEE ACCESS, 2020, 8 : 102811 - 102832
  • [49] Machine Learning in Glomerular Diseases: Promise for Precision Medicine
    Nadkarni, Girish N.
    Chaudhary, Kumardeep
    Coca, Steven G.
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2019, 74 (03) : 290 - 292
  • [50] Interfacing brain organoids with precision medicine and machine learning
    Zheng, Honghui
    Feng, Yilin
    Tang, Jiyuan
    Ma, Shaohua
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (07):