Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

被引:0
|
作者
Wang, Yifan [1 ]
Aivalioti, Evmorfia [2 ]
Stamatelopoulos, Kimon [2 ,3 ]
Zervas, Georgios [2 ]
Mortensen, Martin Bodtker [4 ,5 ]
Zeller, Marianne [6 ,7 ]
Liberale, Luca [8 ,9 ]
Di Vece, Davide [8 ,10 ]
Schweiger, Victor [11 ]
Camici, Giovanni G. [1 ]
Luescher, Thomas F. [1 ,12 ,13 ]
Kraler, Simon [1 ,14 ]
机构
[1] Univ Zurich, Ctr Mol Cardiol, CH- 8952 Schlieren, Switzerland
[2] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Med Sch, Dept Clin Therapeut, Athens, Greece
[3] Newcastle Univ, Biosci Inst, Fac Med Sci, Vasc Biol & Med Theme, Newcastle Upon Tyne, England
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[5] Johns Hopkins Univ, Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Dis, Sch Med, Baltimore, MD USA
[6] CHU Dijon Bourgogne, Dept Cardiol, Dijon, France
[7] Univ Bourgogne, Physiolopathol & Epidemiol Cerebrocardiovasc PEC2, EA 7460, Dijon, France
[8] Univ Genoa, Dept Internal Med, Clin Internal Med 1, Genoa, Italy
[9] IRCCS Osped Policlin San Martino Genoa, Italian Cardiovasc Network, Genoa, Italy
[10] Univ Med Greifswald, Internal Med B, Greifswald, Germany
[11] Charite Campus Virchow Klinikum, Deutsch Herzzentrum, Berlin, Germany
[12] Kings Coll London, Royal Brompton & Harefield Hosp GSTT, London, England
[13] Kings Coll London, Cardiovasc Acad Grp, London, England
[14] Cantonal Hosp Baden, Dept Internal Med & Cardiol, Baden, Switzerland
关键词
artificial intelligence; biomarkers; cardiovascular disease; inflammation; machine learning; omics; precision medicine; residual risk; risk prediction; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; SECONDARY PREVENTION; INFLAMMATORY RISK; CLUSTER-ANALYSIS; PREDICTION; DISEASE; MORTALITY; EVENTS; CLASSIFICATION;
D O I
10.1111/eci.70017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Machine learning in precision medicine: lessons to learn
    Plant, Darren
    Barton, Anne
    NATURE REVIEWS RHEUMATOLOGY, 2021, 17 (01) : 5 - 6
  • [32] Causal machine learning for healthcare and precision medicine
    Sanchez, Pedro
    Voisey, Jeremy P.
    Xia, Tian
    Watson, Hannah I.
    O'Neil, Alison Q.
    Tsaftaris, Sotirios A.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (08):
  • [33] Machine learning in precision medicine: lessons to learn
    Darren Plant
    Anne Barton
    Nature Reviews Rheumatology, 2021, 17 : 5 - 6
  • [34] Clinicians' perceptions towards precision medicine tools for cardiovascular disease risk stratification in South Africa
    Kamp, Michelle
    Pain, Oliver
    Lewis, Cathryn
    Ramsay, Michele
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 630 - 630
  • [35] Clinicians' Perceptions towards Precision Medicine Tools for Cardiovascular Disease Risk Stratification in South Africa
    Kamp, Michelle
    Pain, Oliver
    May, Andrew
    Lewis, Cathryn M.
    Ramsay, Michele
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [36] Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma: A step towards precision medicine
    Ravikulan, Abhimati
    Rostami, Kamran
    WORLD JOURNAL OF GASTROENTEROLOGY, 2024, 30 (05) : 424 - 428
  • [37] Estimating prognosis of gastric neuroendocrine neoplasms using machine learning: A step towards precision medicine
    Wang, Hong-Niu
    An, Jia-Hao
    Zong, Liang
    WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 16 (12)
  • [38] Pointwise Reliability of Machine Learning Models: Application to Cardiovascular Risk Assessment
    Henriques, Jorge
    Rocha, Teresa
    Paredes, Simao
    Gil, Paulo
    Loureiro, Joao
    Petrella, Lorena
    9TH EUROPEAN MEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE, VOL 2, EMBEC 2024, 2024, 113 : 213 - 222
  • [39] A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
    Lee, Su-In
    Celik, Safiye
    Logsdon, Benjamin A.
    Lundberg, Scott M.
    Martins, Timothy J.
    Oehler, Vivian G.
    Estey, Elihu H.
    Miller, Chris P.
    Chien, Sylvia
    Dai, Jin
    Saxena, Akanksha
    Blau, C. Anthony
    Becker, Pamela S.
    NATURE COMMUNICATIONS, 2018, 9
  • [40] Optimizing precision medicine for second-step depression treatment: a machine learning approach
    Curtiss, Joshua
    Smoller, Jordan W.
    Pedrelli, Paola
    PSYCHOLOGICAL MEDICINE, 2024, 54 (10) : 2361 - 2368