Machine learning in cardiovascular risk assessment: Towards a precision medicine approach

被引:0
|
作者
Wang, Yifan [1 ]
Aivalioti, Evmorfia [2 ]
Stamatelopoulos, Kimon [2 ,3 ]
Zervas, Georgios [2 ]
Mortensen, Martin Bodtker [4 ,5 ]
Zeller, Marianne [6 ,7 ]
Liberale, Luca [8 ,9 ]
Di Vece, Davide [8 ,10 ]
Schweiger, Victor [11 ]
Camici, Giovanni G. [1 ]
Luescher, Thomas F. [1 ,12 ,13 ]
Kraler, Simon [1 ,14 ]
机构
[1] Univ Zurich, Ctr Mol Cardiol, CH- 8952 Schlieren, Switzerland
[2] Natl & Kapodistrian Univ Athens, Alexandra Hosp, Med Sch, Dept Clin Therapeut, Athens, Greece
[3] Newcastle Univ, Biosci Inst, Fac Med Sci, Vasc Biol & Med Theme, Newcastle Upon Tyne, England
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[5] Johns Hopkins Univ, Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Dis, Sch Med, Baltimore, MD USA
[6] CHU Dijon Bourgogne, Dept Cardiol, Dijon, France
[7] Univ Bourgogne, Physiolopathol & Epidemiol Cerebrocardiovasc PEC2, EA 7460, Dijon, France
[8] Univ Genoa, Dept Internal Med, Clin Internal Med 1, Genoa, Italy
[9] IRCCS Osped Policlin San Martino Genoa, Italian Cardiovasc Network, Genoa, Italy
[10] Univ Med Greifswald, Internal Med B, Greifswald, Germany
[11] Charite Campus Virchow Klinikum, Deutsch Herzzentrum, Berlin, Germany
[12] Kings Coll London, Royal Brompton & Harefield Hosp GSTT, London, England
[13] Kings Coll London, Cardiovasc Acad Grp, London, England
[14] Cantonal Hosp Baden, Dept Internal Med & Cardiol, Baden, Switzerland
关键词
artificial intelligence; biomarkers; cardiovascular disease; inflammation; machine learning; omics; precision medicine; residual risk; risk prediction; HEART-FAILURE; ARTIFICIAL-INTELLIGENCE; SECONDARY PREVENTION; INFLAMMATORY RISK; CLUSTER-ANALYSIS; PREDICTION; DISEASE; MORTALITY; EVENTS; CLASSIFICATION;
D O I
10.1111/eci.70017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global morbidity and mortality. Validated risk scores are the basis of guideline-recommended care, but most scores lack the capacity to integrate complex and multidimensional data. Limitations inherent to traditional risk prediction models and the growing burden of residual cardiovascular risk highlight the need for refined strategies that go beyond conventional paradigms. Artificial intelligence and machine learning (ML) provide unique opportunities to refine cardiovascular risk assessment and surveillance through the integration of diverse data types and sources, including clinical, electrocardiographic, imaging and multi-omics derived data. In fact, ML models, such as deep neural networks, can handle high-dimensional data through which phenotyping and cardiovascular risk assessment across diverse patient populations become much more precise, fostering a paradigm shift towards more personalized care. Here, we review the role of ML in advancing cardiovascular risk assessment and discuss its potential to identify novel therapeutic targets and to improve prevention strategies. We also discuss key challenges inherent to ML, such as data quality, standardized reporting, model transparency and validation, and discuss barriers in its clinical translation. We highlight the transformative potential of ML in precision cardiology and advocate for more personalized cardiovascular prevention strategies that go beyond previous notions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Cardiovascular Risk Assessment: An Interpretable Machine Learning Approach
    Paredes, S.
    Rocha, T.
    de Carvalho, P.
    Roseiro, I.
    Henriques, J.
    Sousa, J.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 95 - 103
  • [2] Cases in Precision Medicine: A Personalized Approach to Stroke and Cardiovascular Risk Assessment in Women
    Bello, Natalie A.
    Miller, Eliza C.
    Cleary, Kirsten Lawrence
    Wapner, Ronald
    ANNALS OF INTERNAL MEDICINE, 2019, 171 (11) : 837 - +
  • [3] Towards a Precision Medicine Approach Based on Machine Learning for Tailoring Medical Treatment in Alkaptonuria
    Spiga, Ottavia
    Cicaloni, Vittoria
    Visibelli, Anna
    Davoli, Alessandro
    Paparo, Maria Ausilia
    Orlandini, Maurizio
    Vecchi, Barbara
    Santucci, Annalisa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (03) : 1 - 10
  • [4] Biomarkers in cardiovascular medicine: towards precision medicine
    Danielle, Menosi Gualandro
    Raphael, Twerenbold
    Jasper, Boeddinghaus
    Thomas, Nestelberger
    Christian, Puelacher
    Christian, Mueller
    SWISS MEDICAL WEEKLY, 2019, 149
  • [5] Machine learning for precision medicine
    MacEachern, Sarah J.
    Forkert, Nils D.
    GENOME, 2021, 64 (04) : 416 - 425
  • [6] Machine Learning in Cardiovascular Risk Prediction and Precision Preventive Approaches
    Nitesh Gautam
    Joshua Mueller
    Omar Alqaisi
    Tanmay Gandhi
    Abdallah Malkawi
    Tushar Tarun
    Hani J. Alturkmani
    Muhammed Ali Zulqarnain
    Gianluca Pontone
    Subhi J. Al’Aref
    Current Atherosclerosis Reports, 2023, 25 : 1069 - 1081
  • [7] Machine learning in precision diabetes care and cardiovascular risk prediction
    Oikonomou, Evangelos K.
    Khera, Rohan
    CARDIOVASCULAR DIABETOLOGY, 2023, 22 (01)
  • [8] Machine Learning in Cardiovascular Risk Prediction and Precision Preventive Approaches
    Gautam, Nitesh
    Mueller, Joshua
    Alqaisi, Omar
    Gandhi, Tanmay
    Malkawi, Abdallah
    Tarun, Tushar
    Alturkmani, Hani J.
    Zulqarnain, Muhammed Ali
    Pontone, Gianluca
    Al'Aref, Subhi J.
    CURRENT ATHEROSCLEROSIS REPORTS, 2023, 25 (12) : 1069 - 1081
  • [9] Machine learning in precision diabetes care and cardiovascular risk prediction
    Evangelos K. Oikonomou
    Rohan Khera
    Cardiovascular Diabetology, 22
  • [10] Leveraging machine learning for enhanced mortality risk prediction in atrial fibrillation: A step towards precision medicine?
    Chen, Yang
    Zheng, Yalin
    Lip, Gregory Y. H.
    POLISH HEART JOURNAL-KARDIOLOGIA POLSKA, 2024, 82 (10): : 921 - 923