Probabilistic identities involving fully degenerate Bernoulli polynomials and degenerate Euler polynomials

被引:0
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kwon, Jongkyum [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
来源
关键词
Fully degenerate Bernoulli polynomials; degenerate Euler polynomials; uniform random variable; Bernoulli random variable; NUMBERS;
D O I
10.1080/27690911.2024.2448193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Assume that X is the Bernoulli random variable with parameter $ \frac {1}{2} $ 12, and that random variables $ X_1, X_2, \ldots $ X1,X2,& mldr; are a sequence of mutually independent copies of X. We also assume that Y is the uniform random variable on the interval $ [0,1] $ [0,1], and that random variables $ Y_1, Y_2, \ldots $ Y1,Y2,& mldr; are a sequence of mutually independent copies of Y. We consider the fully degenerate Bernoulli polynomials and their higher-order analogues. We also consider the degenerate Euler polynomials and their higher-order analogues. The aim of this paper is to compute the expectations of some random variables associated with those polynomials and random variables explicitly, and to derive certain identities between such expectations.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] ON THE IDENTITIES FOR THE BERNOULLI AND EULER POLYNOMIALS
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    Lee, B.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 413 - 423
  • [42] Fully degenerate poly-Bernoulli polynomials with a q parameter
    Kim, Dae San
    Kim, Tae Kyun
    Mansour, Toufik
    Seo, Jong-Jin
    FILOMAT, 2016, 30 (04) : 1029 - 1035
  • [43] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [44] Probabilistic Bernoulli and Euler Polynomials
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2024, 31 : 94 - 105
  • [45] Probabilistic Bernoulli and Euler Polynomials
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (01) : 94 - 105
  • [46] Triple convolution identities on Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    Liu, Hongmei
    Jia, Cangzhi
    UTILITAS MATHEMATICA, 2016, 101 : 369 - 395
  • [47] Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers
    Kim, T. K.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (01) : 62 - 75
  • [48] Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers
    T. K. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2023, 30 : 62 - 75
  • [49] SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    Ryoo, C. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (1-2): : 29 - 38
  • [50] Probabilistic degenerate Bernstein polynomials
    Wang, Jinyu
    Ma, Yuankui
    Kim, Taekyun
    Kim, Dae San
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):