Probabilistic identities involving fully degenerate Bernoulli polynomials and degenerate Euler polynomials

被引:0
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kwon, Jongkyum [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
来源
关键词
Fully degenerate Bernoulli polynomials; degenerate Euler polynomials; uniform random variable; Bernoulli random variable; NUMBERS;
D O I
10.1080/27690911.2024.2448193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Assume that X is the Bernoulli random variable with parameter $ \frac {1}{2} $ 12, and that random variables $ X_1, X_2, \ldots $ X1,X2,& mldr; are a sequence of mutually independent copies of X. We also assume that Y is the uniform random variable on the interval $ [0,1] $ [0,1], and that random variables $ Y_1, Y_2, \ldots $ Y1,Y2,& mldr; are a sequence of mutually independent copies of Y. We consider the fully degenerate Bernoulli polynomials and their higher-order analogues. We also consider the degenerate Euler polynomials and their higher-order analogues. The aim of this paper is to compute the expectations of some random variables associated with those polynomials and random variables explicitly, and to derive certain identities between such expectations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753
  • [32] A new approach to fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    FILOMAT, 2023, 37 (07) : 2269 - 2278
  • [33] Fully degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    OPEN MATHEMATICS, 2016, 14 : 545 - 556
  • [34] Some identities involving Bernoulli, Euler and degenerate Bernoulli numbers and their applications
    Kim, Taekyun
    Kim, Dae San
    Kim, Hye Kyung
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [35] Several new identities involving Euler and Bernoulli polynomials
    Wang Xiaoying
    Zhang Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (01): : 101 - 108
  • [36] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [37] Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials
    Srivastava, H. M.
    Kurt, Burak
    Kurt, Veli
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1299 - 1313
  • [38] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [39] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Han-Young Kim
    Advances in Difference Equations, 2019
  • [40] Some Identities of Fully Degenerate Dowling Polynomials and Numbers
    Luo, Lingling
    Ma, Yuankui
    Liu, Wencong
    Kim, Taekyun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023