The influence of selective laser melting (SLM) parameters on physical, and mechanical properties of AlSi10Mg cylindrical specimen

被引:0
|
作者
Mohan, R. Raj [1 ]
Krishnan, Navaneetha S. [1 ]
Sakthivel, B. [1 ]
Ramya, J. [2 ]
Sindhumathi, R. [1 ]
机构
[1] SASTRA Univ, Bajaj Engn Skills Training BEST Ctr, Thanjavur 613401, Tamil Nadu, India
[2] SASTRA Univ, Sch Comp, Thanjavur 613401, Tamil Nadu, India
关键词
WEAR BEHAVIOR; OPTIMIZATION; SURFACE; ALLOY; MICROSTRUCTURE; DENSIFICATION; POROSITY; QUALITY;
D O I
10.1088/1402-4896/ada46c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
AlSi10Mg cylindrical specimens were fabricated using the Laser-based Powder Bed Fusion (L-PBF) process, focusing on optimizing scanning speed, hatch spacing, and layer height through the box-behnken design (BBD). The study aimed to minimize surface roughness and maximize relative density. The analysis involved ANOVA, regression analysis, and composite desirability, revealing that hatch spacing and layer height significantly influence relative density and surface roughness. Under optimized conditions (scanning speed: 500 mm s-1, hatch spacing: 100 microns, layer height: 30 microns), the L-PBF specimen achieved a 96.70% relative density, 2.07 microns surface roughness (Ra), and an average microhardness of 124.9 HV0.5 (longitudinal) and 120.5 HV0.5 (transverse).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Influence of Selective Laser Melting Parameters on Density and Mechanical Properties of AlSi10Mg
    Raus, A. A.
    Wahab, M. S.
    Shayfull, Z.
    Kamarudin, K.
    Ibrahim, M.
    2ND INTERNATIONAL CONFERENCE ON GREEN DESIGN AND MANUFACTURE 2016 (ICONGDM 2016), 2016, 78
  • [2] On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties
    Trevisan, Francesco
    Calignano, Flaviana
    Lorusso, Massimo
    Pakkanen, Jukka
    Aversa, Alberta
    Ambrosio, Elisa Paola
    Lombardi, Mariangela
    Fino, Paolo
    Manfredi, Diego
    MATERIALS, 2017, 10 (01):
  • [3] Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting (SLM)
    Bai, P. K.
    Zhao, Z. Y.
    Li, J.
    Wu, L. Y.
    Liang, M. J.
    Tan, L.
    Liao, H. H.
    LASERS IN ENGINEERING, 2019, 44 (1-3) : 157 - 167
  • [4] Mechanical and Physical Properties of AlSi10Mg Processed through Selective Laser Melting
    Raus, A. A.
    Wahab, M. S.
    Ibrahim, M.
    Kamarudin, K.
    Ahmed, Aqeel
    Shamsudin, S.
    7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME'16), 2017, 1831
  • [5] Microstructrue and Mechanical Properties of Selective Laser Melting AlSi10Mg
    Gong, Weiyan
    Qi, Junfeng
    Wang, Zhe
    Chen, Yi
    Jiang, Jiang
    Wang, Zhen
    Qi, Yuanhao
    3RD INTERNATIONAL SYMPOSIUM OF SPACE OPTICAL INSTRUMENTS AND APPLICATIONS, 2017, 192 : 113 - 120
  • [6] Mechanical properties of AlSi10Mg produced by Selective Laser Melting
    Kempen, K.
    Thijs, L.
    Van Humbeeck, J.
    Kruth, J. -P.
    LASER ASSISTED NET SHAPE ENGINEERING 7 (LANE 2012), 2012, 39 : 439 - 446
  • [7] Mechanical behaviour of AlSi10Mg lattice structures manufactured by the Selective Laser Melting (SLM)
    Alessandra Pirinu
    Teresa Primo
    Antonio Del Prete
    Francesco Willem Panella
    Fabio De Pascalis
    The International Journal of Advanced Manufacturing Technology, 2023, 124 : 1651 - 1680
  • [8] Mechanical behaviour of AlSi10Mg lattice structures manufactured by the Selective Laser Melting (SLM)
    Pirinu, Alessandra
    Primo, Teresa
    Del Prete, Antonio
    Panella, Francesco Willem
    De Pascalis, Fabio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (5-6): : 1651 - 1680
  • [9] RESIDUAL STRESSES OF AlSi10Mg FABRICATED BY SELECTIVE LASER MELTING (SLM)
    Karolus, M.
    Maszybrocka, J.
    Stwora, A.
    Skrabalak, G.
    ARCHIVES OF METALLURGY AND MATERIALS, 2019, 64 (03) : 1011 - 1016
  • [10] The Compressive Behavior of Porous AlSi10Mg Prepared by Selective Laser Melting (SLM)
    Huo, P-C
    Zhao, Z-Y
    Bai, P-K
    Zhang, L-Z
    Wu, L-Y
    Du, W-B
    Han, B.
    LASERS IN ENGINEERING, 2020, 47 (4-6) : 361 - 374