Object Tracking with Sensor Fusion - An Interactive Learning Tool

被引:0
|
作者
Moraru, Andrei [1 ]
Dulf, Eva-H [1 ]
机构
[1] Tech Univ Cluj Napoca, Memorandumului 28, Cluj Napoca 400014, Romania
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 26期
关键词
Kalman filter; sensor fusions; autonomous navigation; estimation; object tracking;
D O I
10.1016/j.ifacol.2024.10.285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Body tracking plays a key role in autonomous navigation applications. Behavior that resists inertia can be modelled as a dynamical system, wherein the kinematic component is constituted by the action of motion. Such a system may then be subjected to estimation algorithms and control laws formulated by systems theory, according to the specific problem domain for which it is modelled. This paper presents a detailed comparison of three main statistical algorithms for estimating dynamical system parameters: the linear, extended, and unscented Kalman filters. The body motion is intercepted by sensor fusion. To facilitate visual validation and concretization of the theoretical notions presented, a two-dimensional (2D) game-like graphical application has been developed to enhance user comprehension.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [41] Deformable Object Tracking With Gated Fusion
    Liu, Wenxi
    Song, Yibing
    Chen, Dengsheng
    He, Shengfeng
    Yu, Yuanlong
    Yan, Tao
    Hancke, Gehard P.
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (08) : 3766 - 3777
  • [42] Multiple Feature Fusion for Object Tracking
    Zhou, Yu
    Rao, Cong
    Lu, Qin
    Bai, Xiang
    Liu, Wenyu
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 145 - 152
  • [43] FEATURE FUSION FOR ROBUST OBJECT TRACKING
    Islam, M. A.
    Rasheduzzaman, M.
    Elahi, M. M. Lutfe
    Poon, Bruce
    Amin, M. Ashraful
    Yan, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 138 - 145
  • [44] Interactive object tracking modulates attentional distribution
    Koning, A. R.
    Leenders, M.
    Wolk, C.
    van Lier, R.
    PERCEPTION, 2014, 43 (01) : 29 - 30
  • [45] Online object tracking based interactive attention
    Wang, Hongmei
    Guo, Fan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [46] INTERACTIVE ROTOSCOPING: EXTRACTING AND TRACKING OBJECT SKETCH
    Lv, Han
    Lin, Liang
    Zeng, Kun
    Sang, Nong
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 881 - +
  • [47] Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking
    Xue, Ming
    Yang, Hua
    Zheng, Shibao
    Zhou, Yi
    Yu, Zhenghua
    SENSORS, 2014, 14 (02) : 3130 - 3155
  • [48] Prediction of Single Object Tracking Based on Learning Approach in Wireless Sensor Networks
    Ahmed, Sahar Hamad
    Rashid, Ahmed Noori
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 352 - 357
  • [49] Object Detection Using Multi-Sensor Fusion Based on Deep Learning
    Zhou, Taohua
    Jiang, Kun
    Xiao, Zhongyang
    Yu, Chunlei
    Yang, Diange
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5770 - 5782
  • [50] Adaptive Object Tracking in a Sensor Network
    Rodriguez, Adrian Lopez
    Stojanovic, Milica
    OCEANS 2015 - GENOVA, 2015,