Object Tracking with Sensor Fusion - An Interactive Learning Tool

被引:0
|
作者
Moraru, Andrei [1 ]
Dulf, Eva-H [1 ]
机构
[1] Tech Univ Cluj Napoca, Memorandumului 28, Cluj Napoca 400014, Romania
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 26期
关键词
Kalman filter; sensor fusions; autonomous navigation; estimation; object tracking;
D O I
10.1016/j.ifacol.2024.10.285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Body tracking plays a key role in autonomous navigation applications. Behavior that resists inertia can be modelled as a dynamical system, wherein the kinematic component is constituted by the action of motion. Such a system may then be subjected to estimation algorithms and control laws formulated by systems theory, according to the specific problem domain for which it is modelled. This paper presents a detailed comparison of three main statistical algorithms for estimating dynamical system parameters: the linear, extended, and unscented Kalman filters. The body motion is intercepted by sensor fusion. To facilitate visual validation and concretization of the theoretical notions presented, a two-dimensional (2D) game-like graphical application has been developed to enhance user comprehension.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [21] Interactive Multiple Object Tracking (iMOT)
    Thornton, Ian M.
    Buelthoff, Heinrich H.
    Horowitz, Todd S.
    Rynning, Aksel
    Lee, Seong-Whan
    PLOS ONE, 2014, 9 (02):
  • [22] Mutual Learning and Feature Fusion Siamese Networks for Visual Object Tracking
    Jiang, Min
    Zhao, Yuyao
    Kong, Jun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3154 - 3167
  • [23] Software Tool for Evaluation of Multi-Sensor Object Tracking in ADAS Systems
    Medaglini, A.
    Bartolini, S.
    Di Massa, V.
    Dini, F.
    Ada User Journal, 2022, 43 (03): : 177 - 186
  • [24] Sensor Radar for Object Tracking
    Chiani, Marco
    Giorgetti, Andrea
    Paolini, Enrico
    PROCEEDINGS OF THE IEEE, 2018, 106 (06) : 1022 - 1041
  • [25] AutoTrack: Interactive Visual Object Tracking for Efficient Object Annotations
    Keh, Jefferson
    Cruz, Meygen
    Rivera, Maverick
    Jose, John Anthony
    Sybingco, Edwin
    Dadios, Elmer
    Madria, Wira
    Miguel, Angelimarie
    2020 IEEE 12TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2020,
  • [26] INTERACTIVE MULTI-OBJECT TRACKING FOR VIRTUAL OBJECT MANIPULATION
    Guo, Yibo
    Yang, Michael Ying
    Rosenhahn, Bodo
    ISA13 - THE ISPRS WORKSHOP ON IMAGE SEQUENCE ANALYSIS 2013, 2013, II-3/W2 : 19 - 24
  • [27] Visible-Infrared Dual-Sensor Fusion for Single-Object Tracking
    Liu, Weichun
    Liu, Weibing
    Sun, Yuxin
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 4118 - 4128
  • [28] EagerMOT: 3D Multi-Object Tracking via Sensor Fusion
    Kim, Aleksandr
    Osep, Aljosa
    Leal-Taixe, Laura
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11315 - 11321
  • [29] Sensor Data Fusion of LIDAR with Stereo RGB-D Camera for Object Tracking
    Dieterle, Thomas
    Particke, Florian
    Patino-Studencki, Lucila
    Thielecke, Joern
    2017 IEEE SENSORS, 2017, : 1173 - 1175
  • [30] A multi-sensor fusion and object tracking algorithm for self-driving vehicles
    Yi, Chunlei
    Zhang, Kunfan
    Peng, Nengling
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2019, 233 (09) : 2293 - 2300