Object Tracking with Sensor Fusion - An Interactive Learning Tool

被引:0
|
作者
Moraru, Andrei [1 ]
Dulf, Eva-H [1 ]
机构
[1] Tech Univ Cluj Napoca, Memorandumului 28, Cluj Napoca 400014, Romania
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 26期
关键词
Kalman filter; sensor fusions; autonomous navigation; estimation; object tracking;
D O I
10.1016/j.ifacol.2024.10.285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Body tracking plays a key role in autonomous navigation applications. Behavior that resists inertia can be modelled as a dynamical system, wherein the kinematic component is constituted by the action of motion. Such a system may then be subjected to estimation algorithms and control laws formulated by systems theory, according to the specific problem domain for which it is modelled. This paper presents a detailed comparison of three main statistical algorithms for estimating dynamical system parameters: the linear, extended, and unscented Kalman filters. The body motion is intercepted by sensor fusion. To facilitate visual validation and concretization of the theoretical notions presented, a two-dimensional (2D) game-like graphical application has been developed to enhance user comprehension.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [1] Interactive Object Recognition with Sensor Fusion
    Czuni, Laszlo
    Rashad, Metwally
    2015 6TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM), 2015, : 479 - 482
  • [2] Distributed sensor fusion for object tracking
    Karol, Alankar
    Williams, Mary-Anne
    ROBOCUP 2005: ROBOT SOCCER WORLD CUP IX, 2006, 4020 : 504 - 511
  • [3] Interactive Learning of Sensor Policy Fusion
    Bootsma, Bart
    Franzese, Giovanni
    Kober, Jens
    2021 30TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2021, : 665 - 670
  • [4] Learning a Dynamic Feature Fusion Tracker for Object Tracking
    Li, Zhiyong
    Nai, Ke
    Li, Guiji
    Jiang, Shilong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 1479 - 1491
  • [5] Learning Spatial Fusion and Matching for Visual Object Tracking
    Xiao, Wei
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 352 - 367
  • [6] Object Detection and Tracking Using Sensor Fusion and Particle Filter
    Pelenk, Berk
    Acarman, Tankut
    2013 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2013), 2013, : 210 - 215
  • [7] Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking
    Chavez-Garcia, Ricardo Omar
    Aycard, Olivier
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (02) : 525 - 534
  • [8] Spatio-temporal interactive fusion based visual object tracking method
    Huang, Dandan
    Yu, Siyu
    Duan, Jin
    Wang, Yingzhi
    Yao, Anni
    Wang, Yiwen
    Xi, Junhan
    FRONTIERS IN PHYSICS, 2023, 11
  • [9] Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study
    Markovic, Ivan
    Petrovic, Ivan
    AUTOMATIKA, 2014, 55 (04) : 386 - 398
  • [10] Multi-sensor fusion for real-time object tracking
    Sakshi Verma
    Vishal K. Singh
    Multimedia Tools and Applications, 2024, 83 : 19563 - 19585