A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [41] Estimating graph parameters via random walks with restarts
    Ben-Hamou, Anna
    Oliveira, Roberto I.
    Peres, Yuval
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1702 - 1714
  • [42] Note on directed proper connection number of a random graph
    Gu, Ran
    Deng, Bo
    Li, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 169 - 174
  • [43] A note on perfect simulation for Exponential Random Graph Models
    Cerqueira, Andressa
    Garivier, Aurelien
    Leonardi, Florencia
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 138 - 147
  • [44] A note on a sequential method for estimating the minimum of a random variable
    Schaalje, GB
    Johnson, MR
    Bodily, CH
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2001, 30 (01) : 91 - 98
  • [45] On the first and second largest components in the percolated random geometric graph
    Lichev, Lyuben
    Lodewijks, Bas
    Mitsche, Dieter
    Schapira, Bruno
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 164 : 311 - 336
  • [46] Random geometric graph description of connectedness percolation in rod systems
    Chatterjee, Avik P.
    Grimaldi, Claudio
    PHYSICAL REVIEW E, 2015, 92 (03)
  • [47] Random Graph Matching in Geometric Models: the Case of Complete Graphs
    Wang, Haoyu
    Wu, Yihong
    Xu, Jiaming
    Yolou, Israel
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178
  • [48] Evolving random geometric graph models for mobile wireless networks
    Karamchandani, Nikhil
    Manjunath, D.
    Yogeshwaran, D.
    Iyer, Srikanth K.
    2006 4TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC AND WIRELESS NETWORKS, VOLS 1 AND 2, 2006, : 28 - +
  • [49] Rainbow perfect matchings and Hamilton cycles in the random geometric graph
    Bal, Deepak
    Bennett, Patrick
    Perez-Gimenez, Xavier
    Pralat, Pawel
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) : 587 - 606
  • [50] Topological properties of the one dimensional exponential random geometric graph
    Gupta, Bhupendra
    Iyer, Srikanth K.
    Manjunath, D.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (02) : 181 - 204