A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [31] The Coverage Holes of The Largest Component of Random Geometric Graph
    Chang-long YAO
    Tian-de GUO
    Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 855 - 862
  • [32] Asymptotic distribution of the friendship paradox of a random geometric graph
    Yuan, Mingao
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2024, 38 (03) : 444 - 462
  • [33] On the Distances Within Cliques in a Soft Random Geometric Graph
    Soenmez, Ercan
    Stegehuis, Clara
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (03)
  • [34] Model of a Random Geometric Graph with Attachment to the Coverage Area
    Khoroshenkikh, S. N.
    Dainiak, A. B.
    PROBLEMS OF INFORMATION TRANSMISSION, 2017, 53 (01) : 73 - 83
  • [35] The Coverage Holes of The Largest Component of Random Geometric Graph
    Ya, Chang-long
    Guo, Tian-de
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04): : 855 - 862
  • [36] Analysis of Random Geometric Graph for Wireless Network Configuration
    Ferrero, Renato
    Gandino, Filippo
    2017 TENTH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND UBIQUITOUS NETWORK (ICMU), 2017, : 32 - 37
  • [37] The Performance of Multimessage Algebraic Gossip in a Random Geometric Graph
    Wang, Gang
    Lin, Zun
    Guan, Wenyang
    Wang, Feng
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [38] The coverage holes of the largest component of random geometric graph
    Chang-long Yao
    Tian-de Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 855 - 862
  • [39] On the Distances Within Cliques in a Soft Random Geometric Graph
    Ercan Sönmez
    Clara Stegehuis
    Journal of Statistical Physics, 191
  • [40] Eigenvalues and Spectral Dimension of Random Geometric Graphs in Thermodynamic Regime
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Hamidouche, Mounia
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 1, 2020, 881 : 965 - 975