A note on estimating the dimension from a random geometric graph

被引:0
|
作者
Atamanchuk, Caelan [1 ]
Devroye, Luc [1 ]
Lugosi, Gabor [2 ,3 ,4 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Pompeu Fabra Univ, Dept Econ & Business, Barcelona, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Barcelona Grad Sch Econ, Barcelona, Spain
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate densities; nonparametric estima tion; random geometric graphs; estimating the dimension; absolute conti nuity; INTRINSIC DIMENSIONALITY; POINTS;
D O I
10.1214/24-EJS2331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G(n) be a random geometric graph with vertex set [n] based on n i.i.d. random vectors X-1,& mldr;,X-n drawn from an unknown density f on R-d. An edge (i,j) is present when parallel to X-i-X-j parallel to <= r(n), for a given threshold r(n) possibly depending upon n, where parallel to & sdot;parallel to denotes Euclidean distance. We study the problem of estimating the dimension d of the underlying space when we have access to the adjacency matrix of the graph but do not know r(n) or the vectors X-i. The main result of the paper is that there exists an estimator of d that converges to d in probability as n ->infinity for all densities with integral f(5)infinity and r(n)=o(1). The conditions allow very sparse graphs since when n(3/2)r(n)(d)-> 0, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of d exists when nr(n)(d)->infinity and r(n)=o(1).
引用
收藏
页码:5659 / 5678
页数:20
相关论文
共 50 条
  • [1] Firefighting on a Random Geometric Graph
    Barghi, Amir
    Winkler, Peter
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 466 - 477
  • [2] Estimating Graph Parameters from Random Order Streams
    Peng, Pan
    Sohler, Christian
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 2449 - 2466
  • [3] Random geometric graphs in high dimension
    Erba, Vittorio
    Ariosto, Sebastiano
    Gherardi, Marco
    Rotondo, Pietro
    PHYSICAL REVIEW E, 2020, 102 (01)
  • [4] On threshold probabilities for the realization of a random graph by a geometric graph
    Krot, A. V.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 480 - 481
  • [5] On threshold probabilities for the realization of a random graph by a geometric graph
    A. V. Krot
    Doklady Mathematics, 2015, 92 : 480 - 481
  • [6] The Spectrum of a Random Geometric Graph is Concentrated
    Sanatan Rai
    Journal of Theoretical Probability, 2007, 20 : 119 - 132
  • [7] The spectrum of a random geometric graph is concentrated
    Rai, Sanatan
    JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (02) : 119 - 132
  • [8] Estimating the Parameters of the Waxman Random Graph
    Roughan, Matthew
    Tuke, Jonathan
    Parsonage, Eric
    ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2019, 2019, 11631 : 71 - 86
  • [9] On Dimension in Graph Convolutional Networks for Distinguishing Random Graph Models
    Magner, Abram
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1817 - 1822
  • [10] A note on orientations of the infinite random graph
    Bonato, A
    Delic, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 921 - 926