ON THE D-GAP FUNCTIONS FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH AN APPLICATION TO CONTACT MECHANICS

被引:0
|
作者
Chent, Jein-Shan [1 ,2 ]
Chen, Jein-shan [2 ]
机构
[1] Dong Thap Univ, Dept Math, Cao Lanh City 870000, Dong Thap, Vietnam
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116059, Taiwan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 03期
关键词
elliptic variational-hemivariational inequality; regularized gap function; D-gap function; error bound; contact mechanic problem; GLOBAL ERROR-BOUNDS; NUMERICAL-ANALYSIS; NEWTON METHOD; NONSMOOTH;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to investigate the difference gap (for brevity, D-gap) functions and global error bounds for an abstract class of elliptic variational-hemivariational inequalities (for brevity, EVHIs). Based on the optimality condition for the concerning minimization problem, the regularized gap function for EVHIs is proposed under some suitable conditions. Accordingly, we establish the D-gap functions for EVHIs in terms of these regularized gap functions. Furthermore, we provide global error bounds for EVHIs by virtue of the regularized gap functions and the D-gap functions. An application to contact mechanic problem is given to illustrate our main results.
引用
收藏
页码:489 / 512
页数:24
相关论文
共 50 条
  • [41] MULTIPLICITY RESULTS TO A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bonanno, Gabriele
    Winkert, Patrick
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 43 (02) : 493 - 516
  • [42] A Penalty Method for Elliptic Variational-Hemivariational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    AXIOMS, 2024, 13 (10)
  • [43] Numerical analysis of stationary variational-hemivariational inequalities
    Weimin Han
    Mircea Sofonea
    David Danan
    Numerische Mathematik, 2018, 139 : 563 - 592
  • [44] General Comparison Principle for Variational-Hemivariational Inequalities
    Siegfried Carl
    Patrick Winkert
    Journal of Inequalities and Applications, 2009
  • [45] Numerical analysis of stationary variational-hemivariational inequalities
    Han, Weimin
    Sofonea, Mircea
    Danan, David
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 563 - 592
  • [46] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [47] Existence and comparison results for variational-hemivariational inequalities
    S Carl
    Journal of Inequalities and Applications, 2005
  • [48] A Fixed Point Approach of Variational-Hemivariational Inequalities
    Hu, Rong
    Sofonea, Mircea
    Xiao, Yi-Bin
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 573 - 581
  • [49] On boundary variational-hemivariational inequalities of elliptic type
    Liu, Zhenhai
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 419 - 434
  • [50] Gap Functions and Error Bounds for Variational–Hemivariational Inequalities
    Nguyen Van Hung
    Stanislaw Migórski
    Vo Minh Tam
    Shengda Zeng
    Acta Applicandae Mathematicae, 2020, 169 : 691 - 709