ON THE D-GAP FUNCTIONS FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH AN APPLICATION TO CONTACT MECHANICS

被引:0
|
作者
Chent, Jein-Shan [1 ,2 ]
Chen, Jein-shan [2 ]
机构
[1] Dong Thap Univ, Dept Math, Cao Lanh City 870000, Dong Thap, Vietnam
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116059, Taiwan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 03期
关键词
elliptic variational-hemivariational inequality; regularized gap function; D-gap function; error bound; contact mechanic problem; GLOBAL ERROR-BOUNDS; NUMERICAL-ANALYSIS; NEWTON METHOD; NONSMOOTH;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to investigate the difference gap (for brevity, D-gap) functions and global error bounds for an abstract class of elliptic variational-hemivariational inequalities (for brevity, EVHIs). Based on the optimality condition for the concerning minimization problem, the regularized gap function for EVHIs is proposed under some suitable conditions. Accordingly, we establish the D-gap functions for EVHIs in terms of these regularized gap functions. Furthermore, we provide global error bounds for EVHIs by virtue of the regularized gap functions and the D-gap functions. An application to contact mechanic problem is given to illustrate our main results.
引用
收藏
页码:489 / 512
页数:24
相关论文
共 50 条
  • [21] Numerical analysis of history-dependent variational-hemivariational inequalities with applications in contact mechanics
    Xu, Wei
    Huang, Ziping
    Han, Weimin
    Chen, Wenbin
    Wang, Cheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 : 364 - 377
  • [22] New insights into solvability of fractional evolutionary inclusions and variational-hemivariational inequalities in contact mechanics
    Han, Jiangfeng
    Li, Changpin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (05):
  • [23] GAP FUNCTIONS AND GLOBAL ERROR BOUNDS FOR HISTORY-DEPENDENT VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Cen, Jinxia
    Nguyen, Van Thien
    Zeng, Shengda
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (05): : 461 - 481
  • [24] Well-posedness of evolutionary differential variational-hemivariational inequalities and applications to frictional contact mechanics
    Taki, Nadia Skoglund
    Kumar, Kundan
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (05) : 959 - 1004
  • [25] A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS
    Han, Weimin
    Migorski, Stanislaw
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3891 - 3912
  • [26] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [27] On the optimal control of variational-hemivariational inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 364 - 384
  • [28] ON VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH NONCONVEX CONSTRAINTS
    Chadli, Ouayl
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06): : 893 - 907
  • [29] Existence theorems of the variational-hemivariational inequalities
    Guo-ji Tang
    Nan-jing Huang
    Journal of Global Optimization, 2013, 56 : 605 - 622
  • [30] On convergence of solutions to variational-hemivariational inequalities
    Zeng, Biao
    Liu, Zhenhai
    Migorski, Stanislaw
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):