ON THE D-GAP FUNCTIONS FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH AN APPLICATION TO CONTACT MECHANICS

被引:0
|
作者
Chent, Jein-Shan [1 ,2 ]
Chen, Jein-shan [2 ]
机构
[1] Dong Thap Univ, Dept Math, Cao Lanh City 870000, Dong Thap, Vietnam
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116059, Taiwan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 03期
关键词
elliptic variational-hemivariational inequality; regularized gap function; D-gap function; error bound; contact mechanic problem; GLOBAL ERROR-BOUNDS; NUMERICAL-ANALYSIS; NEWTON METHOD; NONSMOOTH;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to investigate the difference gap (for brevity, D-gap) functions and global error bounds for an abstract class of elliptic variational-hemivariational inequalities (for brevity, EVHIs). Based on the optimality condition for the concerning minimization problem, the regularized gap function for EVHIs is proposed under some suitable conditions. Accordingly, we establish the D-gap functions for EVHIs in terms of these regularized gap functions. Furthermore, we provide global error bounds for EVHIs by virtue of the regularized gap functions and the D-gap functions. An application to contact mechanic problem is given to illustrate our main results.
引用
收藏
页码:489 / 512
页数:24
相关论文
共 50 条
  • [1] Differential variational-hemivariational inequalities with application to contact mechanics
    Migorski, Stanislaw
    Cai, Dong-ling
    Dudek, Sylwia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [2] Gap Functions and Error Bounds for Variational-Hemivariational Inequalities
    Hung, Nguyen Van
    Migorski, Stanislaw
    Tam, Vo Minh
    Zeng, Shengda
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 691 - 709
  • [3] THE ROTHE METHOD FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO CONTACT MECHANICS
    Bartosz, Krzysztof
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 861 - 883
  • [4] History-dependent variational-hemivariational inequalities in contact mechanics
    Migorski, Stanislaw
    Ochal, Anna
    Sofonea, Mircea
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 604 - 618
  • [5] Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics
    Han, Weimin
    MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (03) : 279 - 293
  • [6] Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics
    Han, Jiangfeng
    Lu, Liang
    Zeng, Shengda
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [7] Noncoercive hyperbolic variational-hemivariational inequalities with an application to contact problem
    Peng, Zijia
    Huang, Sheng
    Ma, Cuiming
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [8] A new class of fully history-dependent variational-hemivariational inequalities with application to contact mechanics
    Guo, Furi
    Wang, JinRong
    Lu, Liang
    OPTIMIZATION, 2024, 73 (06) : 1703 - 1738
  • [9] Gap functions and global error bounds for differential variational-hemivariational inequalities
    Cen, Jinxia
    Min, Chao
    Nguyen, Van Thien
    Yao, Jen-Chih
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [10] Contact models leading to variational-hemivariational inequalities
    Costea, Nicusor
    Matei, Andaluzia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 647 - 660