Applications of Artificial Intelligence in Acute Abdominal Imaging

被引:3
|
作者
Yao, Jason [1 ]
Chu, Linda [2 ]
Patlas, Michael [3 ]
机构
[1] McMaster Univ, Dept Radiol, 1280 Main St West, Hamilton L8N 4A6, ON, Canada
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD USA
[3] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
关键词
artificial intelligence; emergency; abdomen; trauma; computed tomography; ultrasound; radiography; radiology; EMERGENCY-DEPARTMENT; COMPUTED-TOMOGRAPHY; CT; PREDICTION; DIAGNOSIS;
D O I
10.1177/08465371241250197
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is a rapidly growing field with significant implications for radiology. Acute abdominal pain is a common clinical presentation that can range from benign conditions to life-threatening emergencies. The critical nature of these situations renders emergent abdominal imaging an ideal candidate for AI applications. CT, radiographs, and ultrasound are the most common modalities for imaging evaluation of these patients. For each modality, numerous studies have assessed the performance of AI models for detecting common pathologies, such as appendicitis, bowel obstruction, and cholecystitis. The capabilities of these models range from simple classification to detailed severity assessment. This narrative review explores the evolution, trends, and challenges in AI applications for evaluating acute abdominal pathologies. We review implementations of AI for non-traumatic and traumatic abdominal pathologies, with discussion of potential clinical impact, challenges, and future directions for the technology. Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) est un domaine en plein essor qui a des implications importantes en radiologie. La douleur abdominale aiguë est une pré sentation clinique courante qui peut prendre de nombreuses formes, de l'affection bé nigne à la situation d'urgence mettant en jeu le pronostic vital. En raison de la nature critique de ces situations, l'imagerie de l'abdomen, un domaine en pleine é mergence, est une candidate idé ale pour la mise en pratique de l'IA. Dans le cadre de l'é valuation des patients souffrant de douleur abdominale aiguë, la TDM, la radiographie et l'é chographie sont les modalité s d'imagerie les plus courantes. Chacune de ces modalité s a fait l'objet de nombreuses é tudes visant à é valuer les performances des modè les d'IA dans le cadre de la dé tection d'affections courantes, telles que l'appendicite, l'occlusion intestinale et la cholé cystite. Les capacité s de ces modè les vont de la simple classification de l'affection à l'é valuation dé taillé e de la gravité de celle-ci. La pré sente revue narrative explore l'é volution, les tendances et les enjeux du recours à l'IA dans le cadre de l'é valuation des affections abdominales aiguë s. Nous passons en revue la mise en oe uvre d'outils d'IA lors de l'é valuation d'affections abdominales traumatiques et non traumatiques, et discutons des ré percussions cliniques potentielles, des enjeux et des orientations futures de cette technologie.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 50 条
  • [31] Emerging Artificial Intelligence Imaging Applications for Stroke Interventions
    Lotan, E.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (02) : 255 - 256
  • [32] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157
  • [33] Practical Applications of Artificial Intelligence in Spine Imaging: A Review
    Bharadwaj, Upasana Upadhyay
    Chin, Cynthia T.
    Majumdar, Sharmila
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (02) : 355 - 370
  • [34] Artificial Intelligence in Medical Imaging, Opportunities, Applications and Risks
    Nabavi, Shahabedin
    Mohammadi, Mohammad
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2021, 44 (02) : 591 - 593
  • [35] Artificial Intelligence Applications for Imaging Metabolic Bone Diseases
    Isaac, Amanda
    Akdogan, Asli Irmak
    Dalili, Danoob
    Saber, Nuran
    Drobny, David
    Guglielmi, Giuseppe
    Modat, Marc
    Bazzocchi, Alberto
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2024, 28 (05) : 610 - 619
  • [36] Machine learning: applications of artificial intelligence to imaging and diagnosis
    Nichols J.A.
    Herbert Chan H.W.
    Baker M.A.B.
    Biophysical Reviews, 2019, 11 (1) : 111 - 118
  • [37] Applications of artificial intelligence in dentomaxillofacial imaging: a systematic review
    Hartoonian, Serlie
    Hosseini, Matine
    Yousefi, Iman
    Mahdian, Mina
    Ahsaie, Mitra Ghazizadeh
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2024, 138 (05): : 641 - 655
  • [38] Artificial intelligence and medical imaging: applications, challenges and solutions
    Law, Meng
    Seah, Jarrel
    Shih, George
    MEDICAL JOURNAL OF AUSTRALIA, 2021, 214 (10) : 450 - +
  • [39] An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging
    Cardobi, Nicolo
    Dal Palu, Alessandro
    Pedrini, Federica
    Beleu, Alessandro
    Nocini, Riccardo
    De Robertis, Riccardo
    Ruzzenente, Andrea
    Salvia, Roberto
    Montemezzi, Stefania
    D'Onofrio, Mirko
    CANCERS, 2021, 13 (09)
  • [40] Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging
    Chang, Jin Y.
    Makary, Mina S.
    DIAGNOSTICS, 2024, 14 (13)