Applications of Artificial Intelligence in Acute Abdominal Imaging

被引:3
|
作者
Yao, Jason [1 ]
Chu, Linda [2 ]
Patlas, Michael [3 ]
机构
[1] McMaster Univ, Dept Radiol, 1280 Main St West, Hamilton L8N 4A6, ON, Canada
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD USA
[3] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
关键词
artificial intelligence; emergency; abdomen; trauma; computed tomography; ultrasound; radiography; radiology; EMERGENCY-DEPARTMENT; COMPUTED-TOMOGRAPHY; CT; PREDICTION; DIAGNOSIS;
D O I
10.1177/08465371241250197
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is a rapidly growing field with significant implications for radiology. Acute abdominal pain is a common clinical presentation that can range from benign conditions to life-threatening emergencies. The critical nature of these situations renders emergent abdominal imaging an ideal candidate for AI applications. CT, radiographs, and ultrasound are the most common modalities for imaging evaluation of these patients. For each modality, numerous studies have assessed the performance of AI models for detecting common pathologies, such as appendicitis, bowel obstruction, and cholecystitis. The capabilities of these models range from simple classification to detailed severity assessment. This narrative review explores the evolution, trends, and challenges in AI applications for evaluating acute abdominal pathologies. We review implementations of AI for non-traumatic and traumatic abdominal pathologies, with discussion of potential clinical impact, challenges, and future directions for the technology. Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) est un domaine en plein essor qui a des implications importantes en radiologie. La douleur abdominale aiguë est une pré sentation clinique courante qui peut prendre de nombreuses formes, de l'affection bé nigne à la situation d'urgence mettant en jeu le pronostic vital. En raison de la nature critique de ces situations, l'imagerie de l'abdomen, un domaine en pleine é mergence, est une candidate idé ale pour la mise en pratique de l'IA. Dans le cadre de l'é valuation des patients souffrant de douleur abdominale aiguë, la TDM, la radiographie et l'é chographie sont les modalité s d'imagerie les plus courantes. Chacune de ces modalité s a fait l'objet de nombreuses é tudes visant à é valuer les performances des modè les d'IA dans le cadre de la dé tection d'affections courantes, telles que l'appendicite, l'occlusion intestinale et la cholé cystite. Les capacité s de ces modè les vont de la simple classification de l'affection à l'é valuation dé taillé e de la gravité de celle-ci. La pré sente revue narrative explore l'é volution, les tendances et les enjeux du recours à l'IA dans le cadre de l'é valuation des affections abdominales aiguë s. Nous passons en revue la mise en oe uvre d'outils d'IA lors de l'é valuation d'affections abdominales traumatiques et non traumatiques, et discutons des ré percussions cliniques potentielles, des enjeux et des orientations futures de cette technologie.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 50 条
  • [21] Artificial intelligence applications for pediatric oncology imaging
    Daldrup-Link, Heike
    PEDIATRIC RADIOLOGY, 2019, 49 (11) : 1384 - 1390
  • [22] Artificial intelligence in liver imaging: methods and applications
    Zhang, Peng
    Gao, Chaofei
    Huang, Yifei
    Chen, Xiangyi
    Pan, Zhuoshi
    Wang, Lan
    Dong, Di
    Li, Shao
    Qi, Xiaolong
    HEPATOLOGY INTERNATIONAL, 2024, 18 (02) : 422 - 434
  • [23] Artificial Intelligence Applications in Aortic Dissection Imaging
    Mastrodicasa, Domenico
    Codari, Marina
    Baumler, Kathrin
    Sandfort, Veit
    Shen, Jody
    Mistelbauer, Gabriel
    Hahn, Lewis D.
    Turner, Valery L.
    Desjardins, Benoit
    Willemink, Martin J.
    Fleischmann, Dominik
    SEMINARS IN ROENTGENOLOGY, 2022, 57 (04) : 357 - 363
  • [24] Emerging artificial intelligence applications in otological imaging
    Chawdhary, Gaurav
    Shoman, Nael
    CURRENT OPINION IN OTOLARYNGOLOGY & HEAD AND NECK SURGERY, 2021, 29 (05): : 357 - 364
  • [25] Artificial intelligence applications for pediatric oncology imaging
    Heike Daldrup-Link
    Pediatric Radiology, 2019, 49 : 1384 - 1390
  • [26] Artificial Intelligence Applications in MR Imaging of the Hip
    Yoon, Christine
    Jones, Kai
    Goker, Barlas
    Sterman, Jonathan
    Mardakhaev, Edward
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2025, 33 (01) : 9 - 18
  • [27] Clinical applications of artificial intelligence in liver imaging
    Yamada, Akira
    Kamagata, Koji
    Hirata, Kenji
    Ito, Rintaro
    Nakaura, Takeshi
    Ueda, Daiju
    Fujita, Shohei
    Fushimi, Yasutaka
    Fujima, Noriyuki
    Matsui, Yusuke
    Tatsugami, Fuminari
    Nozaki, Taiki
    Fujioka, Tomoyuki
    Yanagawa, Masahiro
    Tsuboyama, Takahiro
    Kawamura, Mariko
    Naganawa, Shinji
    RADIOLOGIA MEDICA, 2023, 128 (06): : 655 - 667
  • [28] Artificial intelligence applications in acute ischemic stroke
    Cui, Yuanyuan
    Han, Dongshan
    Fan, Rongrong
    Xiao, Yi
    Fan, Li
    Liu, Shiyuan
    CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2023, 6 (04) : 160 - 169
  • [29] Artificial intelligence applications in acute ischemic stroke
    Yuanyuan Cui
    Dongshan Han
    Rongrong Fan
    Yi Xiao
    Li Fan
    Shiyuan Liu
    Chinese Journal of Academic Radiology, 2023, 6 : 160 - 169
  • [30] Artificial Intelligence in CT and MR Imaging for Oncological Applications
    Paudyal, Ramesh
    Shah, Akash D.
    Akin, Oguz
    Do, Richard K. G.
    Konar, Amaresha Shridhar
    Hatzoglou, Vaios
    Mahmood, Usman
    Lee, Nancy
    Wong, Richard J.
    Banerjee, Suchandrima
    Shin, Jaemin
    Veeraraghavan, Harini
    Shukla-Dave, Amita
    CANCERS, 2023, 15 (09)