Applications of Artificial Intelligence in Acute Abdominal Imaging

被引:3
|
作者
Yao, Jason [1 ]
Chu, Linda [2 ]
Patlas, Michael [3 ]
机构
[1] McMaster Univ, Dept Radiol, 1280 Main St West, Hamilton L8N 4A6, ON, Canada
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD USA
[3] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
关键词
artificial intelligence; emergency; abdomen; trauma; computed tomography; ultrasound; radiography; radiology; EMERGENCY-DEPARTMENT; COMPUTED-TOMOGRAPHY; CT; PREDICTION; DIAGNOSIS;
D O I
10.1177/08465371241250197
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is a rapidly growing field with significant implications for radiology. Acute abdominal pain is a common clinical presentation that can range from benign conditions to life-threatening emergencies. The critical nature of these situations renders emergent abdominal imaging an ideal candidate for AI applications. CT, radiographs, and ultrasound are the most common modalities for imaging evaluation of these patients. For each modality, numerous studies have assessed the performance of AI models for detecting common pathologies, such as appendicitis, bowel obstruction, and cholecystitis. The capabilities of these models range from simple classification to detailed severity assessment. This narrative review explores the evolution, trends, and challenges in AI applications for evaluating acute abdominal pathologies. We review implementations of AI for non-traumatic and traumatic abdominal pathologies, with discussion of potential clinical impact, challenges, and future directions for the technology. Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) est un domaine en plein essor qui a des implications importantes en radiologie. La douleur abdominale aiguë est une pré sentation clinique courante qui peut prendre de nombreuses formes, de l'affection bé nigne à la situation d'urgence mettant en jeu le pronostic vital. En raison de la nature critique de ces situations, l'imagerie de l'abdomen, un domaine en pleine é mergence, est une candidate idé ale pour la mise en pratique de l'IA. Dans le cadre de l'é valuation des patients souffrant de douleur abdominale aiguë, la TDM, la radiographie et l'é chographie sont les modalité s d'imagerie les plus courantes. Chacune de ces modalité s a fait l'objet de nombreuses é tudes visant à é valuer les performances des modè les d'IA dans le cadre de la dé tection d'affections courantes, telles que l'appendicite, l'occlusion intestinale et la cholé cystite. Les capacité s de ces modè les vont de la simple classification de l'affection à l'é valuation dé taillé e de la gravité de celle-ci. La pré sente revue narrative explore l'é volution, les tendances et les enjeux du recours à l'IA dans le cadre de l'é valuation des affections abdominales aiguë s. Nous passons en revue la mise en oe uvre d'outils d'IA lors de l'é valuation d'affections abdominales traumatiques et non traumatiques, et discutons des ré percussions cliniques potentielles, des enjeux et des orientations futures de cette technologie.
引用
收藏
页码:761 / 770
页数:10
相关论文
共 50 条
  • [1] A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging
    Mervak, Benjamin M.
    Fried, Jessica G.
    Wasnik, Ashish P.
    DIAGNOSTICS, 2023, 13 (18)
  • [2] Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging
    Loper, Mark R.
    Makary, Mina S.
    TOMOGRAPHY, 2024, 10 (11) : 1814 - 1831
  • [3] Current and emerging artificial intelligence applications for pediatric abdominal imaging
    Jonathan R. Dillman
    Elan Somasundaram
    Samuel L. Brady
    Lili He
    Pediatric Radiology, 2022, 52 : 2139 - 2148
  • [4] Current and emerging artificial intelligence applications for pediatric abdominal imaging
    Dillman, Jonathan R.
    Somasundaram, Elan
    Brady, Samuel L.
    He, Lili
    PEDIATRIC RADIOLOGY, 2022, 52 (11) : 2139 - 2148
  • [5] Artificial intelligence in abdominal and pelvic ultrasound imaging: current applications
    Cai, Lie
    Pfob, Andre
    ABDOMINAL RADIOLOGY, 2025, 50 (04) : 1775 - 1789
  • [6] Artificial Intelligence in Acute Abdominal Imaging: Are We Reaching the Grail?
    Soyer, Philippe
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2024, 75 (04): : 702 - 703
  • [7] Implementation and design of artificial intelligence in abdominal imaging
    Choi, Hailey H.
    Chang, Silvia D.
    Kohli, Marc D.
    ABDOMINAL RADIOLOGY, 2020, 45 (12) : 4084 - 4089
  • [8] Implementation and design of artificial intelligence in abdominal imaging
    Hailey H. Choi
    Silvia D. Chang
    Marc D. Kohli
    Abdominal Radiology, 2020, 45 : 4084 - 4089
  • [9] Applications of artificial intelligence in cardiovascular imaging
    Maxime Sermesant
    Hervé Delingette
    Hubert Cochet
    Pierre Jaïs
    Nicholas Ayache
    Nature Reviews Cardiology, 2021, 18 : 600 - 609
  • [10] Applications of Artificial Intelligence in Breast Imaging
    Morgan, Matthew B.
    Mates, Jonathan L.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (01) : 139 - 148