Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling

被引:0
|
作者
Javed, Muhammad Hassan [1 ]
Ahmad, Anees [1 ]
Rehan, Mohammad [2 ]
Musharavati, Farayi [3 ]
Nizami, Abdul-Sattar [1 ,4 ]
Khan, Mohammad Ilyas [5 ]
机构
[1] Govt Coll Univ, Sustainable Dev Study Ctr, Lahore 54000, Pakistan
[2] King Abdulaziz Univ, Ctr Excellence Environm Studies CEES, Jeddah 21589, Saudi Arabia
[3] Qatar Univ, Dept Mech & Ind Engn, Doha, Qatar
[4] Korea Univ, Grad Sch Energy & Environm, Seoul 02481, South Korea
[5] King Khalid Univ, Coll Engn, Dept Chem Engn, Abha 61421, Saudi Arabia
关键词
gasification; life cycle assessment; plastic waste; sustainability; synthetic gas; TO-ENERGY; TECHNOLOGIES;
D O I
10.3390/su17031277
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The explosion of plastic waste generation, approaching 400 million tons per year, has created a worldwide environmental crisis that conventional waste management systems cannot handle. This problem can be solved through gasification, which converts nonrecyclable plastics to syngas with potential applications in electricity generation and synthetic fuel production. This study investigates whether syngas production from plastic waste by gasification is environmentally and economically feasible. Environmental impacts were assessed through a life cycle assessment framework using a life cycle impact assessment approach, ReCiPe 2016, with 10 midpoint/endpoint categories. Midpoint results of the baseline scenario with grid-mix electricity revealed climate change (GWP) of 775 kg CO2 equivalent and fossil depletion potential (FDP) of 311 kg oil equivalent per ton of plastic waste. Meanwhile, a solar scenario showed GWP as 435 kg CO2 equivalent and FDP as 166 kg oil equivalent per ton of plastic waste. Switching to solar energy cut GWP 44% and FDP 47%, respectively. However, the tradeoffs were higher human toxicity potential (HTP) and marine ecotoxicity potential (METP) due to upstream material extraction of renewable systems, respectively. Among environmental performance drivers, electricity inputs and operating materials were identified through sensitivity and uncertainty analyses. Syngas production from a plant of 50 tons per day can yield electricity sales revenue of USD 4.79 million, excluding USD 4.05 million in operational expenditures. Financial indicators like a 2.06-year payback period, USD 5.32 million net present value over a 20-year project life, and 38.2% internal rate of return indicate the profitability of the system. An external cost analysis showed emissions-related costs of USD 26.43 per ton of plastic waste processed, dominated by CO2 and NOx emissions. Despite these costs, the avoided impacts of less landfilling/incineration and electricity generation support gasification. Gasification should be promoted as a subsidy and incentive by policymakers for wider adoption and integration into municipal waste management systems. Findings show it can be adapted to global sustainability goals and circular economy principles while delivering strong economic returns. The study findings also contribute to several Sustainable Development Goals (SDGs), for instance, SDG 7 by promoting clean energy technologies, SDG 12 by implementing circular economy, and SDG 13 by reducing greenhouse gas (GHG) emissions.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Environmental and economic assessment of plastic waste recycling and energy recovery pathways in the EU
    Garcia-Gutierrez, Pelayo
    Amadei, Andrea Martino
    Klenert, David
    Nessi, Simone
    Tonini, Davide
    Tosches, Davide
    Ardente, Fulvio
    Saveyn, Hans G. M.
    RESOURCES CONSERVATION AND RECYCLING, 2025, 215
  • [42] Multi-objective optimization to improve energy, economic and, environmental life cycle assessment in waste-to-energy plant
    Mayanti, Bening
    Songok, Joel
    Helo, Petri
    WASTE MANAGEMENT, 2021, 127 : 147 - 157
  • [43] Management of waste tyres: properties, life cycle assessment and energy generation
    Kaur, Perminder Jit
    Kaushik, Geetanjali
    Hussain, Chaudhery Mustansar
    Dutta, Venkatesh
    ENVIRONMENTAL SUSTAINABILITY, 2021, 4 (02) : 261 - 271
  • [44] Life cycle environmental and energy impact assessment of sustainable urban municipal solid waste collection and transportation strategies
    Taskin, Akif
    Demir, Nesrin
    SUSTAINABLE CITIES AND SOCIETY, 2020, 61
  • [45] Switchgrass as an alternate feedstock for power generation: An integrated environmental, energy and economic life-cycle assessment
    Qin X.
    Mohan T.
    El-Halwagi M.
    Cornforth G.
    McCarl B.A.
    Clean Technologies and Environmental Policy, 2006, 8 (4) : 233 - 249
  • [46] A REVIEW ON THE ENVIRONMENTAL ASSESSMENT OF ELECTRICITY GENERATION: ECONOMIC INPUT-OUTPUT VS. PROCESS-BASED LIFE CYCLE ASSESSMENT
    Oliveira, C.
    Coelho, D.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROJECT EVALUATION (ICOPEV 2016), 2016, : 267 - 272
  • [47] Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece
    Orfanos, Neoptolemos
    Mitzelos, Dimitris
    Sagani, Angeliki
    Dedoussis, Vassilis
    RENEWABLE ENERGY, 2019, 139 : 1447 - 1462
  • [48] Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment
    Pokhrel, Prakash
    Lin, Sheng-Lung
    Tsai, Chi-Ting
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 276 (276)
  • [49] The Environmental Analysis of Rice Straw, Preparation As Feedstock into Electricity Generation Using Life Cycle Assessment, LCA: Malaysia
    Shafie, S. M.
    Mahlia, T. M. I.
    Masjuki, H. H.
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 612 - 617
  • [50] The environmental footprint of UAETs electricity sector: Combining life cycle assessment and scenario modeling
    Treyer, Karin
    Bauer, Christian
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 55 : 1234 - 1247