Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers

被引:0
|
作者
Madebo, Nigatu Wanore [1 ]
机构
[1] INSA, Addis Ababa 124498, Ethiopia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Quadrotors; Autonomous aerial vehicles; Genetic algorithms; Intelligent control; Fuzzy logic; Robustness; Vehicle dynamics; Uncertainty; Trajectory; Optimization; FPID; GAFPID; fuzzy; unmanned aerial vehicle (UAV); DESIGN;
D O I
10.1109/ACCESS.2025.3532743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents advanced control strategies to enhance the stability and trajectory tracking performance of quadrotor systems. The study investigates three control methodologies: the Fuzzy Logic Controller (Fuzzy), the Fuzzy Proportional-Integral-Derivative (FPID) controller, and the Genetic Algorithm (GA)-optimized Fuzzy PID controller (GAFPID). The Fuzzy controller leverages heuristic rules for adaptive control, while the FPID controller integrates conventional PID dynamics with fuzzy logic to improve precision and robustness. The GAFPID controller employs evolutionary computation through a genetic algorithm to optimize parameter tuning, offering superior control performance. Comparative simulations are conducted under diverse operating conditions, including external disturbances and parameter variation scenarios, with performance evaluated using the Integral of Time-weighted Absolute Error (ITAE) metric. Results demonstrate that the GAFPID controller outperforms the other approaches in terms of precision, adaptability, and robustness, establishing it as a promising solution for complex quadrotor applications.
引用
收藏
页码:16548 / 16563
页数:16
相关论文
共 50 条
  • [41] Analytical structures for fuzzy PID controllers?
    Mohan, B. M.
    Sinha, Arpita
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (01) : 52 - 60
  • [42] Adaptive fuzzy tuning of PID controllers
    Morteza Esfandyari
    Mohammad Ali Fanaei
    Hadi Zohreie
    Neural Computing and Applications, 2013, 23 : 19 - 28
  • [43] Structural research of fuzzy PID controllers
    Zhang, JS
    Yu, DW
    Qi, SQ
    2005 International Conference on Control and Automation (ICCA), Vols 1 and 2, 2005, : 1248 - 1253
  • [44] Altitude and Position Control of Parrot Mambo Minidrone with PID and Fuzzy PID Controllers
    Kaplan, Mucahid Ridvan
    Eraslan, Abdullah
    Beke, Aykut
    Kumbasar, Tufan
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 785 - 789
  • [45] Comparative Transient Response Analysis of LLC Resonant Converter Controlled by Adaptive PID and Fuzzy Logic Controllers
    Buccella, Concettina
    Cecati, Carlo
    Latafat, Hamed
    Razi, Kaveh
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4729 - 4734
  • [46] Improving Vegas algorithm using PID and fuzzy PID controllers
    Shahingohar, Aria
    Menhaj, Mohammad Bagher
    Karrari, Mehdi
    Yaghamae, Mohammad Hossein
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 765 - +
  • [47] Improving JoBS algorithm using PID and fuzzy PID controllers
    Mirjalily, Ghasem
    Saadat, Reza
    Ahmadian, Mahnaz
    IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 1405 - +
  • [48] Temperature control: PID vs. fuzzy logic
    Galan, P
    CONTROL ENGINEERING, 2004, 51 (01) : IP7 - IP8
  • [49] A novel design and tuning procedure for PID type fuzzy logic controllers
    Escamilla-Ambrosio, PJ
    Mort, N
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 36 - 41
  • [50] Leveraging fuzzy Logic PID controllers for accelerating chemical reactor CFD
    Turman, Eric M.
    Strasser, Wayne
    CHEMICAL ENGINEERING SCIENCE, 2022, 262