Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers

被引:0
|
作者
Madebo, Nigatu Wanore [1 ]
机构
[1] INSA, Addis Ababa 124498, Ethiopia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Quadrotors; Autonomous aerial vehicles; Genetic algorithms; Intelligent control; Fuzzy logic; Robustness; Vehicle dynamics; Uncertainty; Trajectory; Optimization; FPID; GAFPID; fuzzy; unmanned aerial vehicle (UAV); DESIGN;
D O I
10.1109/ACCESS.2025.3532743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents advanced control strategies to enhance the stability and trajectory tracking performance of quadrotor systems. The study investigates three control methodologies: the Fuzzy Logic Controller (Fuzzy), the Fuzzy Proportional-Integral-Derivative (FPID) controller, and the Genetic Algorithm (GA)-optimized Fuzzy PID controller (GAFPID). The Fuzzy controller leverages heuristic rules for adaptive control, while the FPID controller integrates conventional PID dynamics with fuzzy logic to improve precision and robustness. The GAFPID controller employs evolutionary computation through a genetic algorithm to optimize parameter tuning, offering superior control performance. Comparative simulations are conducted under diverse operating conditions, including external disturbances and parameter variation scenarios, with performance evaluated using the Integral of Time-weighted Absolute Error (ITAE) metric. Results demonstrate that the GAFPID controller outperforms the other approaches in terms of precision, adaptability, and robustness, establishing it as a promising solution for complex quadrotor applications.
引用
收藏
页码:16548 / 16563
页数:16
相关论文
共 50 条
  • [31] Comparison of Fuzzy and PID Controllers for the Attitude Control of Nanosatellites
    Calvo, Daniel
    Bello, Alvaro
    Victoria Lapuerta, Maria
    Laveron-Simavilla, Ana
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 1062 - 1081
  • [32] Relationship between fuzzy controllers and PID controllers
    李洪兴
    Science in China(Series E:Technological Sciences), 1999, (02) : 215 - 224
  • [33] Relationship between fuzzy controllers and PID controllers
    Hongxing Li
    Science in China Series E: Technological Sciences, 1999, 42 : 215 - 224
  • [34] GA-optimized fuzzy logic control of a large-scale building for seismic loads
    Shook, David A.
    Roschke, Paul N.
    Lin, Pei-Yang
    Loh, Chin-Hsiung
    ENGINEERING STRUCTURES, 2008, 30 (02) : 436 - 449
  • [35] Adaptive fuzzy tuning of PID controllers
    Esfandyari, Morteza
    Fanaei, Mohammad Ali
    Zohreie, Hadi
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 : S19 - S28
  • [36] Teaching PID and Fuzzy Controllers with LabVIEW
    Keller, J. P.
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2000, 16 (03) : 202 - 211
  • [37] Hardware Implementation of Fuzzy PID Controllers
    Taifu Li
    Jundi Xiong
    Rui Zhang
    Qifu Tan
    Ruizheng Xu
    Fuzzy Optimization and Decision Making, 2006, 5 (2) : 113 - 122
  • [38] FUZZY GAIN SCHEDULING OF PID CONTROLLERS
    ZHAO, ZY
    TOMIZUKA, M
    ISAKA, S
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (05): : 1392 - 1398
  • [39] FUZZY ANTIRESET WINDUP FOR PID CONTROLLERS
    HANSSON, A
    GRUBER, P
    TODTLI, J
    CONTROL ENGINEERING PRACTICE, 1994, 2 (03) : 389 - 396
  • [40] Structure analysis of Mamdani fuzzy PID controllers with nonlinear input fuzzy sets
    Haj-Ali, A
    Ying, H
    2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, 2002, : 19 - 21