Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers

被引:0
|
作者
Madebo, Nigatu Wanore [1 ]
机构
[1] INSA, Addis Ababa 124498, Ethiopia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Quadrotors; Autonomous aerial vehicles; Genetic algorithms; Intelligent control; Fuzzy logic; Robustness; Vehicle dynamics; Uncertainty; Trajectory; Optimization; FPID; GAFPID; fuzzy; unmanned aerial vehicle (UAV); DESIGN;
D O I
10.1109/ACCESS.2025.3532743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents advanced control strategies to enhance the stability and trajectory tracking performance of quadrotor systems. The study investigates three control methodologies: the Fuzzy Logic Controller (Fuzzy), the Fuzzy Proportional-Integral-Derivative (FPID) controller, and the Genetic Algorithm (GA)-optimized Fuzzy PID controller (GAFPID). The Fuzzy controller leverages heuristic rules for adaptive control, while the FPID controller integrates conventional PID dynamics with fuzzy logic to improve precision and robustness. The GAFPID controller employs evolutionary computation through a genetic algorithm to optimize parameter tuning, offering superior control performance. Comparative simulations are conducted under diverse operating conditions, including external disturbances and parameter variation scenarios, with performance evaluated using the Integral of Time-weighted Absolute Error (ITAE) metric. Results demonstrate that the GAFPID controller outperforms the other approaches in terms of precision, adaptability, and robustness, establishing it as a promising solution for complex quadrotor applications.
引用
收藏
页码:16548 / 16563
页数:16
相关论文
共 50 条
  • [1] Intelligent Control Systems and Fuzzy Controllers. II. Trained Fuzzy Controllers, Fuzzy PID Controllers
    S. N. Vassilyev
    Yu. I. Kudinov
    F. F. Pashchenko
    I. S. Durgaryan
    A. Yu. Kelina
    I. Yu. Kudinov
    A. F. Pashchenko
    Automation and Remote Control, 2020, 81 : 922 - 934
  • [2] Intelligent Control Systems and Fuzzy Controllers. II. Trained Fuzzy Controllers, Fuzzy PID Controllers
    Vassilyev, S. N.
    Kudinov, Yu. I.
    Pashchenko, F. F.
    Durgaryan, I. S.
    Kelina, A. Yu.
    Kudinov, I. Yu.
    Pashchenko, A. F.
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (05) : 922 - 934
  • [3] Tuning of PID controllers with fuzzy logic
    Visioli, A
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (01): : 1 - 8
  • [4] Comparison of Position Control of a Gyroscopic Inverted Pendulum Using PID, Fuzzy Logic and Fuzzy PID controllers
    Rabah, Mohammed
    Rohan, Ali
    Kim, Sung-Ho
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2018, 18 (02) : 103 - 110
  • [5] Vehicle Control Strategies Analysis Based on PID and Fuzzy Logic Control
    Li, Hui-min
    Wang, Xiao-bo
    Song, Shang-bin
    Li, Hao
    GREEN INTELLIGENT TRANSPORTATION SYSTEM AND SAFETY, 2016, 138 : 234 - 243
  • [6] Fuzzy PID controllers
    Rotach, V.Ya.
    Thermal Engineering, 1999, 46 (08): : 651 - 655
  • [7] PID and Fuzzy Logic Controllers for DC Motor Speed Control
    Flores-Moran, Eduardo
    Yanez-Pazmino, Wendy
    Espin-Pazmino, Luis
    Molina-Miranda, Maria
    Guzman-Real, Carlos
    COMPUTER AND COMMUNICATION ENGINEERING, ICCCE 2018, 2019, 959 : 155 - 168
  • [8] Performance Optimization of PID Controllers using Fuzzy Logic
    Sam, Sneha Mariam
    Angel, T. S.
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES AND MANAGEMENT FOR COMPUTING, COMMUNICATION, CONTROLS, ENERGY AND MATERIALS (ICSTM), 2017, : 438 - 442
  • [9] Developments of fuzzy PID controllers
    Kazemian, HB
    EXPERT SYSTEMS, 2005, 22 (05) : 254 - 264
  • [10] Using fuzzy logic in control applications: Beyond fuzzy PID control
    Chiu, S
    IEEE CONTROL SYSTEMS MAGAZINE, 1998, 18 (05): : 100 - 105