Ocean Internal Wave Detection in SAR Images Based on Improved YOLOv7

被引:0
|
作者
Cai, Limei [1 ]
Zha, Guozhen [1 ]
Lin, Mingsen [2 ]
Wang, Xiao [1 ]
Zhang, Honghua [3 ]
机构
[1] Jiangsu Ocean Univ, Sch Marine Technol & Geomat, Lianyungang 222005, Peoples R China
[2] Tianjin Univ, Sch Marine Sci & Technol, Tianjin 300072, Peoples R China
[3] Lianyungang Meteorol Bur, Lianyungang 222006, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Radar polarimetry; Feature extraction; Standards; Deep learning; YOLO; Ocean waves; Ocean internal wave; YOLOv7; detection; SAR; dynamic snake convolution; large separable kernel attention;
D O I
10.1109/ACCESS.2024.3468641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ocean internal waves not only enhance ocean mixing and impact sediment resuspension, but also threaten the safety of marine engineering facilities and underwater navigation bodies. Therefore, the accurate detection and identification of ocean internal waves are crucial to ensure the safety of marine activities and optimize the development of marine resources. To improve the accuracy and efficiency of ocean internal wave identification, this paper proposes an automatic identification technique based on YOLOv7, which can quickly and accurately extract the signatures of ocean internal waves from a large amounts of SAR (Synthetic Aperture Radar) images, and realize the efficient identification of ocean internal waves. First, in this paper, dynamic snake convolution (DSConv) is introduced into the efficient layer aggregation network (ELAN) module of the backbone network, so that the network can adaptively focus on the irregular strip-like morphology of the ocean internal waves. In addition, large separable kernel attention (LSKA) is introduced in Conv_BN_SiLU (CBS) of the two downsampling modules in the neck network to capture a wider range of contextual information and enhance the feature fusion process of ocean internal waves. The experimental results show that the F1, (mean average precision) mAP50, and mAP50:95 of the improved YOLOv7 network model are 91.3%, 94.3%, and 59.1%, respectively, which are 5.3%, 2.7%, and 2.8% higher compared to the baseline model.
引用
收藏
页码:146852 / 146865
页数:14
相关论文
共 50 条
  • [1] Improved SAR Ship Detection Algorithm for YOLOv7
    Xiao, Zhenjiu
    Lin, Bohan
    Qu, Haicheng
    Computer Engineering and Applications, 2023, 59 (15) : 243 - 252
  • [2] Instance segmentation ship detection based on improved Yolov7 using complex background SAR images
    Yasir, Muhammad
    Zhan, Lili
    Liu, Shanwei
    Wan, Jianhua
    Hossain, Md Sakaouth
    Colak, Arife Tugsan Isiacik
    Liu, Mengge
    Islam, Qamar Ul
    Mehdi, Syed Raza
    Yang, Qian
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [3] YOLOv7-sea: Object Detection of Maritime UAV Images based on Improved YOLOv7
    Zhao, Hangyue
    Zhang, Hongpu
    Zhao, Yanyun
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 233 - 238
  • [4] Improved YOLOv7 Object Detection Algorithm for Fisheye Images
    Wu, Zhaodong
    Xu, Cheng
    Liu, Hongzhe
    Fu, Ying
    Jian, Muwei
    Computer Engineering and Applications, 2024, 60 (14) : 250 - 256
  • [5] A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7
    Tang, Hongdou
    Gao, Song
    Li, Song
    Wang, Pengyu
    Liu, Jiqiu
    Wang, Simin
    Qian, Jiang
    REMOTE SENSING, 2024, 16 (03)
  • [6] Underwater Target Detection Based on Improved YOLOv7
    Liu, Kaiyue
    Sun, Qi
    Sun, Daming
    Peng, Lin
    Yang, Mengduo
    Wang, Nizhuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [7] Mask wearing detection based on improved YOLOv7
    Fu Hui-chen
    Gao Jun-wei
    Che Lu-yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (08) : 1139 - 1147
  • [8] Helmet Detection Algorithm Based on Improved YOLOv7
    Yilihamu, Yaermaimaiti
    Liu, Yajie
    Xi, Lingfei
    Wang, Ruohao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (06) : 642 - 655
  • [9] Ship Detection and Recognition Based on Improved YOLOv7
    Wu, Wei
    Li, Xiulai
    Hu, Zhuhua
    Liu, Xiaozhang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 489 - 498
  • [10] Underwater Target Detection Based on Improved YOLOv7
    Fu, Junshang
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (04) : 422 - 429