Ship Detection and Recognition Based on Improved YOLOv7

被引:20
|
作者
Wu, Wei [1 ]
Li, Xiulai [2 ]
Hu, Zhuhua [1 ]
Liu, Xiaozhang [3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, Sch Cyberspace Secur, Haikou 570228, Peoples R China
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 76卷 / 01期
关键词
Ship position prediction; target detection; YOLOv7; data augmentation techniques;
D O I
10.32604/cmc.2023.039929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multiscale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced through the application of data augmentation techniques, including random rotation, scaling, and cropping, which serve to bolster data diversity and robustness. The distribution of positive and negative samples in the dataset is balanced using random sampling, ensuring a more accurate representation of real-world scenarios. Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness, highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [1] Improved SAR Ship Detection Algorithm for YOLOv7
    Xiao, Zhenjiu
    Lin, Bohan
    Qu, Haicheng
    Computer Engineering and Applications, 2023, 59 (15) : 243 - 252
  • [2] LSDNet: a lightweight ship detection network with improved YOLOv7
    Lang, Cui
    Yu, Xiaoyan
    Rong, Xianwei
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [3] LSDNet: a lightweight ship detection network with improved YOLOv7
    Cui Lang
    Xiaoyan Yu
    Xianwei Rong
    Journal of Real-Time Image Processing, 2024, 21
  • [4] Fruit Target Recognition and Maturity Detection Based on Improved YOLOv7
    Chen Q.
    Li R.
    Hu L.
    Zhang Y.
    Computer-Aided Design and Applications, 2024, 21 (S25): : 156 - 170
  • [5] A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7
    Tang, Hongdou
    Gao, Song
    Li, Song
    Wang, Pengyu
    Liu, Jiqiu
    Wang, Simin
    Qian, Jiang
    REMOTE SENSING, 2024, 16 (03)
  • [6] Macadamia (Macadamia integrifolia) detection and recognition based on improved YOLOv7 algorithm
    Lin, Zuxiang
    Ma, Rong
    Wang, Yingdong
    Li, Jiaqiang
    He, Chao
    Liu, Xueyuan
    Yu, Haisheng
    ANNALS OF APPLIED BIOLOGY, 2025,
  • [7] Weed detection and recognition in complex wheat fields based on an improved YOLOv7
    Wang, Kaixin
    Hu, Xihong
    Zheng, Huiwen
    Lan, Maoyang
    Liu, Changjiang
    Liu, Yihui
    Zhong, Lei
    Li, Hai
    Tan, Suiyan
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [8] Underwater Target Detection Based on Improved YOLOv7
    Liu, Kaiyue
    Sun, Qi
    Sun, Daming
    Peng, Lin
    Yang, Mengduo
    Wang, Nizhuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)
  • [9] Mask wearing detection based on improved YOLOv7
    Fu Hui-chen
    Gao Jun-wei
    Che Lu-yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (08) : 1139 - 1147
  • [10] Helmet Detection Algorithm Based on Improved YOLOv7
    Yilihamu, Yaermaimaiti
    Liu, Yajie
    Xi, Lingfei
    Wang, Ruohao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (06) : 642 - 655