Ship Detection and Recognition Based on Improved YOLOv7

被引:20
|
作者
Wu, Wei [1 ]
Li, Xiulai [2 ]
Hu, Zhuhua [1 ]
Liu, Xiaozhang [3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, Sch Cyberspace Secur, Haikou 570228, Peoples R China
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 76卷 / 01期
关键词
Ship position prediction; target detection; YOLOv7; data augmentation techniques;
D O I
10.32604/cmc.2023.039929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multiscale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced through the application of data augmentation techniques, including random rotation, scaling, and cropping, which serve to bolster data diversity and robustness. The distribution of positive and negative samples in the dataset is balanced using random sampling, ensuring a more accurate representation of real-world scenarios. Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness, highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [21] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [22] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [23] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55
  • [24] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507
  • [25] Mine Personnel Detection Algorithm Based on Improved YOLOv7
    Shao X.
    Li X.
    Yang Y.
    Yuan Z.
    Yang T.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (03): : 414 - 423
  • [26] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE ACCESS, 2024, 12 : 194390 - 194398
  • [27] Disease Detection of Asphalt Pavement Based on Improved YOLOv7
    Ni, Changshuang
    Li, Lin
    Luo, Wenting
    Qin, Yong
    Yang, Zhen
    Fu, Youhua
    Computer Engineering and Applications, 2023, 59 (13) : 305 - 316
  • [28] Instance segmentation ship detection based on improved Yolov7 using complex background SAR images
    Yasir, Muhammad
    Zhan, Lili
    Liu, Shanwei
    Wan, Jianhua
    Hossain, Md Sakaouth
    Colak, Arife Tugsan Isiacik
    Liu, Mengge
    Islam, Qamar Ul
    Mehdi, Syed Raza
    Yang, Qian
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [29] An Improved Ship Classification Method Based on YOLOv7 Model with Attention Mechanism
    Cen J.
    Feng H.
    Liu X.
    Hu Y.
    Li H.
    Li H.
    Huang W.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [30] Characteristic Elements Detection of Tangka Based on Improved YOLOv7
    Li, Guomin
    Shi, Wei
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 388 - 394