Ocean Internal Wave Detection in SAR Images Based on Improved YOLOv7

被引:0
|
作者
Cai, Limei [1 ]
Zha, Guozhen [1 ]
Lin, Mingsen [2 ]
Wang, Xiao [1 ]
Zhang, Honghua [3 ]
机构
[1] Jiangsu Ocean Univ, Sch Marine Technol & Geomat, Lianyungang 222005, Peoples R China
[2] Tianjin Univ, Sch Marine Sci & Technol, Tianjin 300072, Peoples R China
[3] Lianyungang Meteorol Bur, Lianyungang 222006, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Radar polarimetry; Feature extraction; Standards; Deep learning; YOLO; Ocean waves; Ocean internal wave; YOLOv7; detection; SAR; dynamic snake convolution; large separable kernel attention;
D O I
10.1109/ACCESS.2024.3468641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ocean internal waves not only enhance ocean mixing and impact sediment resuspension, but also threaten the safety of marine engineering facilities and underwater navigation bodies. Therefore, the accurate detection and identification of ocean internal waves are crucial to ensure the safety of marine activities and optimize the development of marine resources. To improve the accuracy and efficiency of ocean internal wave identification, this paper proposes an automatic identification technique based on YOLOv7, which can quickly and accurately extract the signatures of ocean internal waves from a large amounts of SAR (Synthetic Aperture Radar) images, and realize the efficient identification of ocean internal waves. First, in this paper, dynamic snake convolution (DSConv) is introduced into the efficient layer aggregation network (ELAN) module of the backbone network, so that the network can adaptively focus on the irregular strip-like morphology of the ocean internal waves. In addition, large separable kernel attention (LSKA) is introduced in Conv_BN_SiLU (CBS) of the two downsampling modules in the neck network to capture a wider range of contextual information and enhance the feature fusion process of ocean internal waves. The experimental results show that the F1, (mean average precision) mAP50, and mAP50:95 of the improved YOLOv7 network model are 91.3%, 94.3%, and 59.1%, respectively, which are 5.3%, 2.7%, and 2.8% higher compared to the baseline model.
引用
收藏
页码:146852 / 146865
页数:14
相关论文
共 50 条
  • [41] Coastal Vessel Target Detection Model Based on Improved YOLOv7
    Zhao, Guiling
    Xu, Ziyao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2025,
  • [42] Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
    Yang, Yongliang
    Xu, Linghua
    Luo, Maolin
    Wang, Xiao
    Cao, Min
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 2741 - 2765
  • [43] A detection method for dead caged hens based on improved YOLOv7
    Yang, Jikang
    Zhang, Tiemin
    Fang, Cheng
    Zheng, Haikun
    Ma, Chuang
    Wu, Zhenlong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 226
  • [44] Pedestrian Detection Method in Infrared Image Based on Improved YOLOv7
    Liu, Zhengyan
    Dai, Chaoyue
    Li, Xu
    Proceedings of 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2023, 2023, : 946 - 954
  • [45] An Apricot Detection Algorithm in Complex Environments Based on Improved YOLOv7
    Guo, Qiang
    Ma, Chi
    Hu, Hui
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2135 - 2144
  • [46] Improved YOLOv7 Underwater Object Detection Based on Attention Mechanism
    Fu, Junshang
    Tian, Ying
    ENGINEERING LETTERS, 2024, 32 (07) : 1377 - 1384
  • [47] Detection of Famous Tea Buds Based on Improved YOLOv7 Network
    Wang, Yongwei
    Xiao, Maohua
    Wang, Shu
    Jiang, Qing
    Wang, Xiaochan
    Zhang, Yongnian
    AGRICULTURE-BASEL, 2023, 13 (06):
  • [48] Fruit Target Recognition and Maturity Detection Based on Improved YOLOv7
    Chen Q.
    Li R.
    Hu L.
    Zhang Y.
    Computer-Aided Design and Applications, 2024, 21 (S25): : 156 - 170
  • [49] A marigold corolla detection model based on the improved YOLOv7 lightweight
    Fan, Yixuan
    Tohti, Gulbahar
    Geni, Mamtimin
    Zhang, Guohui
    Yang, Jiayu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4703 - 4712
  • [50] Camellia oleifera trunks detection and identification based on improved YOLOv7
    Wang, Haorui
    Liu, Yang
    Luo, Hong
    Luo, Yuanyin
    Zhang, Yuyan
    Long, Fei
    Li, Lijun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (27):