GCATRL: Using deep reinforcement learning to optimize knowledge graph completion

被引:0
|
作者
Zhang, Liping [1 ]
Xu, Minming [1 ]
Li, Song [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
基金
国家重点研发计划;
关键词
Graph Convolutional Neural Network; Knowledge Graph Completion; Generative Adversarial Networks; Markov Process; Dual-Delay Deep Deterministic Policy Gradient based on Correlation and Attention Mechanisms;
D O I
10.3837/tiis.2025.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graph Completion (KGC) holds significance across various applications, such as Q&A systems, search engines, and recommendation systems. However, employing deep reinforcement learning for this task encounters specific challenges, impacting completion accuracy and stability. These challenges include sparse rewards, intricate multi-step reasoning, absence of domain-specific rules, overestimation problems, and coupling issues of value and policy. In response, this paper presents GCATRL, a reinforcement learning model integrating the Dual-Delay Deep Deterministic Policy Gradient based on Correlation and Attention Mechanisms (CATD3) with Generative Adversarial Networks (GANs). Initially, we adopt graph convolutional neural network (GCN) for preprocessing to represent the relationships and entities in the knowledge graph as continuous vectors. Subsequently, we combined Wasserstein-GAN (WGAN) with the designed gated recurrent unit (HOGRU), introduced an attention mechanism to record the path trajectory sequence formed during the knowledge graph traversal process, and dynamically generated new subgraph at the appropriate time to ensure that the traversal process of the knowledge graph continues. Finally, CATD3 is used to optimize rewards and mitigate adversarial losses. We demonstrate through experimental results that the proposed model outperforms traditional algorithms on multiple tasks performed on multiple datasets.
引用
收藏
页码:790 / 810
页数:21
相关论文
共 50 条
  • [31] Resource Allocation in Vehicular Communications using Graph and Deep Reinforcement Learning
    Gyawali, Sohan
    Qian, Yi
    Hu, Rose Qingyang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [32] MemoryPath: A deep reinforcement learning framework for incorporating memory component into knowledge graph reasoning
    Li, Shuangyin
    Wang, Heng
    Pan, Rong
    Mao, Mingzhi
    NEUROCOMPUTING, 2021, 419 : 273 - 286
  • [33] DGTRL: Deep graph transfer reinforcement learning method based on fusion of knowledge and data
    Chen, Genxin
    Qi, Jin
    Gao, Yu
    Zhu, Xingjian
    Dong, Zhenjiang
    Sun, Yanfei
    INFORMATION SCIENCES, 2024, 658
  • [34] ADRL: An attention-based deep reinforcement learning framework for knowledge graph reasoning
    Wang, Qi
    Hao, Yongsheng
    Cao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [35] Multi-hop Segmentation for Knowledge Graph Reasoning Based on Deep Reinforcement Learning
    Wei, Mengke
    Liu, Chengming
    Guan, Jiahao
    Li, Yinghao
    Wei, Lin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 : 483 - 494
  • [36] DAPath: Distance-aware knowledge graph reasoning based on deep reinforcement learning
    Tiwari, Prayag
    Zhu, Hongyin
    Pandey, Hari Mohan
    NEURAL NETWORKS, 2021, 135 : 1 - 12
  • [37] Research Progress of Knowledge Graph Completion Based on Knowledge Representation Learning
    Yu, Mengbo
    Du, Jianqiang
    Luo, Jigen
    Nie, Bin
    Liu, Yong
    Qiu, Junyang
    Computer Engineering and Applications, 2023, 59 (18) : 59 - 73
  • [38] Learning to Optimize Molecular Geometries Using Reinforcement Learning
    Ahuja, Kabir
    Green, William H.
    Li, Yi-Pei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (02) : 818 - 825
  • [39] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [40] Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion
    Li, Weidong
    Zhang, Xinyu
    Wang, Yaqian
    Yan, Zhihuan
    Peng, Rong
    IEEE ACCESS, 2019, 7 : 157960 - 157971