Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion

被引:1
|
作者
Yin, Hong [1 ]
Zhong, Jiang [1 ]
Li, Rongzhen [1 ]
Li, Xue [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld 4072, Australia
关键词
Knowledge graph completion; Disentangled representation learning; Graph neural network; Contrastive learning;
D O I
10.1016/j.knosys.2024.111828
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning disentangled entity representations has garnered significant attention in the field of knowledge graph completion (KGC). However, the existing methods inherently overlook the indicative role of relations and the correlation between latent factors and relations, leading to suboptimal entity representations for KGC tasks. In the current study, we introduce the Disentangled Relational Graph Neural Network with Contrastive Learning (DRGCL) method, designed to acquire disentangled entity representations guided by relations. In particular, we first devise the factor -aware relational message aggregation approach to learn entity representations under each semantic subspace and obtain latent factor representations by attention mechanisms. Subsequently, we propose a discrimination objective for factor -subspace pairs using a contrastive learning approach, which compels the factor representations to distinctly capture the information associated with different latent factors and promote the consistency between factor representations and semantic subspaces. Through disentanglement, our model can generate relation -aware scores tailored to the provided scenario. Extensive experiments have been conducted on three benchmark datasets and the results demonstrate the superiority of our method compared with strong baseline models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [2] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [3] Mixed-Curvature Multi-Relational Graph Neural Network for Knowledge Graph Completion
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Xiang, Bing
    Yu, Philip S.
    Cruz, Isabel F.
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1761 - 1771
  • [4] Completion of Temporal Knowledge Graph for Historical Contrastive Learning
    Xu, Zhihong
    Qiu, Penglin
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2024, 60 (22) : 154 - 161
  • [5] PRGNN: Modeling high-order proximity with relational graph neural network for knowledge graph completion
    Zhu, Danhao
    NEUROCOMPUTING, 2024, 594
  • [6] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106
  • [7] Robot Fault Knowledge Graph Completion Based on Relational Graph Convolutional Network
    Li, Yong
    Wu, Guidong
    Proceedings - 2023 China Automation Congress, CAC 2023, 2023, : 1915 - 1919
  • [8] MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion
    Dai, Guoquan
    Wang, Xizhao
    Zou, Xiaoying
    Liu, Chao
    Cen, Si
    NEURAL NETWORKS, 2022, 154 : 234 - 245
  • [9] Disentangled Graph Contrastive Learning With Independence Promotion
    Li, Haoyang
    Zhang, Ziwei
    Wang, Xin
    Zhu, Wenwu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7856 - 7869
  • [10] Disentangled contrastive learning for fair graph representations
    Zhang, Guixian
    Yuan, Guan
    Cheng, Debo
    Liu, Lin
    Li, Jiuyong
    Zhang, Shichao
    NEURAL NETWORKS, 2025, 181