We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=& sum;k=1mAktckxk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A[c] :=\sum _{k=1}<^>m A_k t<^>{c_k} x_k, $$\end{document}where Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k$$\end{document} are matrices over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}, xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_k$$\end{document} are noncommutative variables, ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_k$$\end{document} are integer weights, and t is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. in Comput Complex 26:717-763, 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and for membership of rank-2 Brascamp-Lieb polytopes.
机构:
Univ New South Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Saigon Univ, Dept Math & Applicat, Ho Chi Minh City, VietnamUniv New South Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Chuong, T. D.
Jeyakumar, V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Dept Appl Math, Sydney, NSW 2052, AustraliaUniv New South Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Jeyakumar, V.
Li, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Dept Appl Math, Sydney, NSW 2052, AustraliaUniv New South Wales, Dept Appl Math, Sydney, NSW 2052, Australia
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaNatl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore