Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices

被引:0
|
作者
Hirai, Hiroshi [1 ]
Iwamasa, Yuni [2 ]
Oki, Taihei [3 ]
Soma, Tasuku [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya 4648602, Japan
[2] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[3] Hokkaido Univ, Inst Chem React Design & Discovery ICReDD, Sapporo 0010021, Japan
[4] Inst Stat Math, Tokyo 1908562, Japan
基金
日本学术振兴会;
关键词
Combinatorial optimization; Noncommutative Edmonds' problem; Nc-rank; Dieudonn & eacute; determinant; Euclidean building; Fractional linear matroid matching; Brascamp-Lieb polytope; DISCRETE CONVEX-OPTIMIZATION; BRASCAMP-LIEB INEQUALITIES; 2-LATTICE POLYHEDRA; ALGORITHMS; RANK;
D O I
10.1007/s10107-024-02158-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=& sum;k=1mAktckxk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A[c] :=\sum _{k=1}<^>m A_k t<^>{c_k} x_k, $$\end{document}where Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k$$\end{document} are matrices over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}, xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_k$$\end{document} are noncommutative variables, ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_k$$\end{document} are integer weights, and t is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. in Comput Complex 26:717-763, 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and for membership of rank-2 Brascamp-Lieb polytopes.
引用
收藏
页数:44
相关论文
共 44 条
  • [21] Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians
    Caracciolo, Sergio
    Sokal, Alan D.
    Sportiello, Andrea
    ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (04) : 474 - 594
  • [22] Combinatorial Optimization for Weighing Matrices with the Ordering Messy Genetic Algorithm
    Koukouvinos, Christos
    Simos, Dimitris E.
    EXPERIMENTAL ALGORITHMS, 2011, 6630 : 148 - 156
  • [23] Computing the Maximum Degree of Minors in Mixed Polynomial Matrices via Combinatorial Relaxation
    Iwata, Satoru
    Takamatsu, Mizuyo
    INTEGER PROGRAMMING AND COMBINATORAL OPTIMIZATION, IPCO 2011, 2011, 6655 : 274 - 286
  • [24] Computing the Maximum Degree of Minors in Mixed Polynomial Matrices via Combinatorial Relaxation
    Iwata, Satoru
    Takamatsu, Mizuyo
    ALGORITHMICA, 2013, 66 (02) : 346 - 368
  • [25] Computing the Maximum Degree of Minors in Mixed Polynomial Matrices via Combinatorial Relaxation
    Satoru Iwata
    Mizuyo Takamatsu
    Algorithmica, 2013, 66 : 346 - 368
  • [26] New constructs for the description of combinatorial optimization problems in algebraic modeling languages
    Bisschop, J.J.
    Fourer, Robert
    Computational Optimization and Applications, 1996, 6 (01): : 83 - 116
  • [27] Maiorana-McFarland class: Degree optimization and algebraic properties
    Pasalic, Enes
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4581 - 4594
  • [28] Structural Preprocessing Method for Nonlinear Differential-Algebraic Equations Using Linear Symbolic Matrices
    Oki, Taihei
    Song, Yujin
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 143 - 152
  • [29] Algebraic surrogate-based process optimization using Bayesian symbolic learning
    Forster, Tim
    Vazquez, Daniel
    Guillen-Gosalbez, Gonzalo
    AICHE JOURNAL, 2023, 69 (08)
  • [30] Algebraic Optimization of Binary Spatially Coupled Measurement Matrices for Interval Passing
    Habib, Salman
    Kliewer, Jorg
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 450 - 454