Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices

被引:0
|
作者
Hirai, Hiroshi [1 ]
Iwamasa, Yuni [2 ]
Oki, Taihei [3 ]
Soma, Tasuku [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya 4648602, Japan
[2] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[3] Hokkaido Univ, Inst Chem React Design & Discovery ICReDD, Sapporo 0010021, Japan
[4] Inst Stat Math, Tokyo 1908562, Japan
基金
日本学术振兴会;
关键词
Combinatorial optimization; Noncommutative Edmonds' problem; Nc-rank; Dieudonn & eacute; determinant; Euclidean building; Fractional linear matroid matching; Brascamp-Lieb polytope; DISCRETE CONVEX-OPTIMIZATION; BRASCAMP-LIEB INEQUALITIES; 2-LATTICE POLYHEDRA; ALGORITHMS; RANK;
D O I
10.1007/s10107-024-02158-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=& sum;k=1mAktckxk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A[c] :=\sum _{k=1}<^>m A_k t<^>{c_k} x_k, $$\end{document}where Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_k$$\end{document} are matrices over a field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}, xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_k$$\end{document} are noncommutative variables, ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_k$$\end{document} are integer weights, and t is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. in Comput Complex 26:717-763, 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and for membership of rank-2 Brascamp-Lieb polytopes.
引用
收藏
页数:44
相关论文
共 44 条