CAGEN: CONTROLLABLE ANOMALY GENERATOR USING DIFFUSION MODEL

被引:0
|
作者
Jiang, Bolin [1 ]
Xie, Yuqiu [1 ]
Li, Jiawei [2 ]
Li, Naiqi [1 ]
Jiang, Yong [1 ]
Xia, Shu-Tao [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] Huawei Mfg, Shenzhen, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Anomaly detection; Data augmentation; Diffusion model;
D O I
10.1109/ICASSP48485.2024.10447663
中图分类号
学科分类号
摘要
Data augmentation has been widely applied in anomaly detection, which generates synthetic anomalous data for training. However, most existing anomaly augmentation methods focus on image-level cut-and-paste techniques, resulting in less realistic synthetic results, and are restricted to a few pre-defined patterns. In this paper, we propose our Controllable Anomaly Generator (CAGen) for anomaly data augmentation, which can generate high-quality images, and be flexibly controlled with text prompts. Specifically, our method finetunes a ControlNet model by using binary masks and textual prompts to control the spatial localization and style of generated anomalies. To further augment the resemblance between the generated features and normal samples, we propose a fusion method that integrates the generated anomalous features with the features of normal samples. Experiments on standard anomaly detection benchmarks show that the proposed data augmentation method significantly leads to a 0.4/3.1 improvement in the AUROC/AP metric.
引用
收藏
页码:3110 / 3114
页数:5
相关论文
共 50 条
  • [41] MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion
    Jiang, Chiyu Max
    Cornman, Andre
    Park, Cheolho
    Sapp, Benjamin
    Zhou, Yin
    Anguelov, Dragomir
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9644 - 9653
  • [42] ODD: ONE-CLASS ANOMALY DETECTION VIA THE DIFFUSION MODEL
    Wang, He
    Dai, Longquan
    Tong, Jinglin
    Zhai, Yan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3000 - 3004
  • [43] Self-supervised Diffusion Model for Anomaly Segmentation in Medical Imaging
    Kumar, Komal
    Chakraborty, Snehashis
    Roy, Sudipta
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 359 - 368
  • [44] Controllable Light Diffusion for Portraits
    Futschik, David
    Ritland, Kelvin
    Vecore, James
    Fanello, Sean
    Orts-Escolano, Sergio
    Curless, Brian
    Sjkora, Daniel
    Pandey, Rohit
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8412 - 8421
  • [45] THEORY OF CONTROLLABLE DIFFUSION PROCESSES
    KRYLOV, NV
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (02): : 298 - 300
  • [46] Development of an externally controllable sealed isotope generator
    Sasaki, Toru
    Aoki, Katsumi
    Yamashita, Ryosuke
    Hori, Kensuke
    Kato, Taiga
    Saito, Misaki
    Niisawa, Kazuhiro
    Nagatsu, Kotaro
    Nozaki, Tadashi
    APPLIED RADIATION AND ISOTOPES, 2018, 133 : 51 - 56
  • [47] A Hybrid Generator Architecture for Controllable Face Synthesis
    Mensah, Dann
    Kim, Nam Hee
    Aittala, Miika
    Laine, Samuli
    Lehtinen, Jaakko
    PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023, 2023,
  • [48] MULTI-PURPOSE CONTROLLABLE FUNCTION GENERATOR
    TAHA, SMR
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1985, 58 (02) : 307 - 314
  • [49] A CRYOTRON GENERATOR OF CONTROLLABLE FREQUENCY RELAXATION OSCILLATIONS
    KAN, YS
    RAKHUBOV.VA
    CRYOGENICS, 1967, 7 (01) : 46 - &
  • [50] FREQUENCY-CONTROLLABLE TRANSISTOR RC GENERATOR
    ZHAVKOV, VA
    MEASUREMENT TECHNIQUES USSR, 1981, 24 (06): : 492 - 493